skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on July 25, 2018

Title: Automatized convergence of optoelectronic simulations using active machine learning

Authors:
ORCiD logo [1] ;  [2] ;  [3] ;  [4] ; ORCiD logo [5]
  1. Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
  2. Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
  3. Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
  4. Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
  5. Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, United Kingdom
Publication Date:
Grant/Contract Number:
20140013DR
Type:
Publisher's Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 111; Journal Issue: 4; Related Information: CHORUS Timestamp: 2018-02-15 02:28:57; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
OSTI Identifier:
1372511