DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of energy transport in DIII-D High- β P EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models

Abstract

Energy transport analyses of DIII-D high-βP EAST-demonstration discharges have been performed using the TGYRO transport package with TGLF turbulent and NEO neoclassical transport models under the OMFIT integrated modeling framework. Ion energy transport is shown to be dominated by neoclassical transport and ion temperature profiles predicted by TGYRO agree closely with the experimental measured profiles for these high- βP discharges. Ion energy transport is largely insensitive to reductions in the E × B flow shear stabilization. The Shafranov shift is shown to play a role in the suppression of the ion turbulent energy transport below the neoclassical level. Electron turbulent energy transport is under-predicted by TGLF and a significant shortfall in the electron energy transport over the whole core plasma is found with TGLF predictions for these high- βP discharges. TGYRO can successfully predict the experimental ion and electron temperature profiles by artificially increasing the saturated turbulence level for ETG driven modes used in TGLF.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
General Atomics, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1338854
Alternate Identifier(s):
OSTI ID: 1338855; OSTI ID: 1372466; OSTI ID: 1374818
Grant/Contract Number:  
FC02-04ER54698; FG03-95ER54309; 2014GB106001; 2015GB101000; 2015GB102001; 2015GB110001
Resource Type:
Published Article
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Name: Nuclear Fusion Journal Volume: 57 Journal Issue: 3; Journal ID: ISSN 0029-5515
Publisher:
IOP Publishing
Country of Publication:
IAEA
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; high-BP; energy transport; EXB; Shafranov shif

Citation Formats

Pan, C., Staebler, G. M., Lao, L. L., Garofalo, A. M., Gong, X., Ren, Q., McClenaghan, J., Li, G., Ding, S., Qian, J., Wan, B., Xu, G. S., Solomon, W., Meneghini, O., and Smith, S. P. Investigation of energy transport in DIII-D High- β P EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models. IAEA: N. p., 2017. Web. doi:10.1088/1741-4326/aa4ff8.
Pan, C., Staebler, G. M., Lao, L. L., Garofalo, A. M., Gong, X., Ren, Q., McClenaghan, J., Li, G., Ding, S., Qian, J., Wan, B., Xu, G. S., Solomon, W., Meneghini, O., & Smith, S. P. Investigation of energy transport in DIII-D High- β P EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models. IAEA. https://doi.org/10.1088/1741-4326/aa4ff8
Pan, C., Staebler, G. M., Lao, L. L., Garofalo, A. M., Gong, X., Ren, Q., McClenaghan, J., Li, G., Ding, S., Qian, J., Wan, B., Xu, G. S., Solomon, W., Meneghini, O., and Smith, S. P. Wed . "Investigation of energy transport in DIII-D High- β P EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models". IAEA. https://doi.org/10.1088/1741-4326/aa4ff8.
@article{osti_1338854,
title = {Investigation of energy transport in DIII-D High- β P EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models},
author = {Pan, C. and Staebler, G. M. and Lao, L. L. and Garofalo, A. M. and Gong, X. and Ren, Q. and McClenaghan, J. and Li, G. and Ding, S. and Qian, J. and Wan, B. and Xu, G. S. and Solomon, W. and Meneghini, O. and Smith, S. P.},
abstractNote = {Energy transport analyses of DIII-D high-βP EAST-demonstration discharges have been performed using the TGYRO transport package with TGLF turbulent and NEO neoclassical transport models under the OMFIT integrated modeling framework. Ion energy transport is shown to be dominated by neoclassical transport and ion temperature profiles predicted by TGYRO agree closely with the experimental measured profiles for these high- βP discharges. Ion energy transport is largely insensitive to reductions in the E × B flow shear stabilization. The Shafranov shift is shown to play a role in the suppression of the ion turbulent energy transport below the neoclassical level. Electron turbulent energy transport is under-predicted by TGLF and a significant shortfall in the electron energy transport over the whole core plasma is found with TGLF predictions for these high- βP discharges. TGYRO can successfully predict the experimental ion and electron temperature profiles by artificially increasing the saturated turbulence level for ETG driven modes used in TGLF.},
doi = {10.1088/1741-4326/aa4ff8},
journal = {Nuclear Fusion},
number = 3,
volume = 57,
place = {IAEA},
year = {Wed Jan 11 00:00:00 EST 2017},
month = {Wed Jan 11 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1088/1741-4326/aa4ff8

Citation Metrics:
Cited by: 64 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Diffusion Driven Plasma Currents and Bootstrap Tokamak
journal, January 1971

  • Bickerton, R. J.; Connor, J. W.; Taylor, J. B.
  • Nature Physical Science, Vol. 229, Issue 4
  • DOI: 10.1038/physci229110a0

Plasma Transport in Toroidal Confinement Systems
journal, January 1972


Theory of plasma transport in toroidal confinement systems
journal, April 1976


Bootstrap current in TFTR
journal, March 1988


Stationary, high bootstrap fraction plasmas in DIII-D without inductive current control
journal, May 2005


Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D
journal, November 2015


Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime
journal, June 2016

  • Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.
  • Physics of Plasmas, Vol. 23, Issue 6
  • DOI: 10.1063/1.4948724

Gyro-Landau fluid equations for trapped and passing particles
journal, October 2005

  • Staebler, G. M.; Kinsey, J. E.; Waltz, R. E.
  • Physics of Plasmas, Vol. 12, Issue 10
  • DOI: 10.1063/1.2044587

A theory-based transport model with comprehensive physics
journal, May 2007

  • Staebler, G. M.; Kinsey, J. E.; Waltz, R. E.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2436852

New Paradigm for Suppression of Gyrokinetic Turbulence by Velocity Shear
journal, January 2013


A new paradigm for E × B velocity shear suppression of gyro-kinetic turbulence and the momentum pinch
journal, September 2013


An Eulerian gyrokinetic-Maxwell solver
journal, April 2003


The first transport code simulations using the trapped gyro-Landau-fluid model
journal, May 2008

  • Kinsey, J. E.; Staebler, G. M.; Waltz, R. E.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2889008

Trapped gyro-Landau-fluid transport modeling of DIII-D hybrid discharges
journal, December 2010

  • Kinsey, J. E.; Staebler, G. M.; Petty, C. C.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3523058

Predictions of the near edge transport shortfall in DIII-D L-mode plasmas using the trapped gyro-Landau-fluid model
journal, January 2015

  • Kinsey, J. E.; Staebler, G. M.; Candy, J.
  • Physics of Plasmas, Vol. 22, Issue 1
  • DOI: 10.1063/1.4905630

Observation of Reduced Electron-Temperature Fluctuations in the Coreof H-Mode Plasmas
journal, January 2008


A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear
journal, September 2011


Transport and turbulence studies in the linear ohmic confinement regime in Alcator C-Mod
journal, November 2012


Resolving the mystery of transport within internal transport barriers
journal, May 2014

  • Staebler, G. M.; Kinsey, J. E.; Belli, E. A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875334

Tokamak profile prediction using direct gyrokinetic and neoclassical simulation
journal, June 2009

  • Candy, J.; Holland, C.; Waltz, R. E.
  • Physics of Plasmas, Vol. 16, Issue 6
  • DOI: 10.1063/1.3167820

Turbulent energy exchange: Calculation and relevance for profile prediction
journal, August 2013


Integrated Modeling of Tokamak Experiments with OMFIT
journal, January 2013


Integrated modeling applications for tokamak experiments with OMFIT
journal, July 2015


Suppression of turbulence and transport by sheared flow
journal, January 2000


Electron heat transport in improved confinement discharges in DIII-D
journal, May 1999

  • Stallard, B. W.; Greenfield, C. M.; Staebler, G. M.
  • Physics of Plasmas, Vol. 6, Issue 5
  • DOI: 10.1063/1.873494

Gyrofluid simulations of turbulence suppression in reversed-shear experiments on the Tokamak Fusion Test Reactor
journal, May 1997

  • Beer, M. A.; Hammett, G. W.; Rewoldt, G.
  • Physics of Plasmas, Vol. 4, Issue 5
  • DOI: 10.1063/1.872279

Separation of β̄ p and ℓ i in tokamaks of non-circular cross-section
journal, October 1985


Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations
journal, May 2008

  • White, A. E.; Schmitz, L.; McKee, G. R.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2895408

Measurements of the cross-phase angle between density and electron temperature fluctuations and comparison with gyrokinetic simulations
journal, May 2010

  • White, A. E.; Peebles, W. A.; Rhodes, T. L.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3323084

Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence
journal, May 2009

  • Holland, C.; White, A. E.; McKee, G. R.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3085792

Advances in validating gyrokinetic turbulence models against L- and H-mode plasmas
journal, May 2011

  • Holland, C.; Schmitz, L.; Rhodes, T. L.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3574518

Probing plasma turbulence by modulating the electron temperature gradient
journal, May 2010

  • DeBoo, J. C.; Holland, C.; Rhodes, T. L.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3316298

Investigation of the transport shortfall in Alcator C-Mod L-mode plasmas
journal, March 2013

  • Howard, N. T.; White, A. E.; Greenwald, M.
  • Physics of Plasmas, Vol. 20, Issue 3
  • DOI: 10.1063/1.4795301

Multi-scale gyrokinetic simulation of tokamak plasmas: enhanced heat loss due to cross-scale coupling of plasma turbulence
journal, December 2015


Plasma microturbulence simulation of instabilities at highly disparate scales
journal, July 2007


Works referencing / citing this record:

Transport barriers in bootstrap-driven tokamaks
journal, May 2018

  • Staebler, G. M.; Garofalo, A. M.; Pan, C.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5019282

Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges
journal, April 2018

  • Wu, M. Q.; Pan, C. K.; Chan, V. S.
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5024405