skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on June 21, 2018

Title: Density functional analysis of fluorite-structured (Ce, Zr)O 2/CeO 2 interfaces [Density functional analysis of fluorite-structured (Ce, Zr)O 2/CeO 2 interfaces: Implications for catalysis and energy applications]

The structures and properties of Ce 1–xZr xO 2 (x = 0–1) solid solutions, selected Ce 1–xZr xO 2 surfaces, and Ce 1–xZr xO 2/CeO 2 interfaces were computed within the framework of density functional theory corrected for strong electron correlation (DFT+ U). The calculated Debye temperature increases steadily with Zr content in (Ce, Zr)O 2 phases, indicating a significant rise in microhardness from CeO 2 to ZrO 2, without appreciable loss in ductility as the interfacial stoichiometry changes. Surface energy calculations for the low-index CeO 2(111) and (110) surfaces show limited sensitivity to strong 4f-electron correlation. The fracture energy of Ce 1–xZr xO 2(111)/CeO 2(111) increases markedly with Zr content, with a significant decrease in energy for thicker Ce 1–xZr xO 2 films. These findings suggest the crucial role of Zr acting as a binder at the Ce 1–xZr xO 2/CeO 2 interfaces, due to the more covalent character of Zr–O bonds compared to Ce–O. Finally, the impact of surface relaxation upon interface cracking was assessed and found to reach a maximum for Ce 0.25Zr 0.75O 2/CeO 2 interfaces.
Authors:
ORCiD logo [1] ;  [1] ;  [1] ;  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Univ. of Nevada, Las Vegas, NV (United States)
Publication Date:
Report Number(s):
SAND2017-4331J
Journal ID: ISSN 1932-7447; 652748
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 121; Journal Issue: 27; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE), Fuel Cycle Technologies (NE-5)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE
OSTI Identifier:
1372358