DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A reversible phase transition for sodium insertion in anatase TiO2

Abstract

Anatase TiO2 is a potential negative electrode for sodium-ion batteries. The sodium storage mechanism is, however, still under debate, yet its comprehension is required to optimize the electrochemical properties. To clarify the sodium storage mechanism occurring in anatase, we have used both electrochemical and chemical routes from which we obtained similar trends. During the first discharge, an irreversible plateau region is observed which corresponds to the insertion of Na+ within the interstitial sites of anatase and is accompanied by a drastic loss of the long-range order as revealed by X-ray diffraction, high resolution of high angle annular dark-field scanning transmission electron microscope (HAADF-STEM), and pair distribution function (PDF) analysis. Further structural analysis of the total scattering data indicates that the sodiated phase displays a layered-like rhombohedral R3m structure built from the stacking of Ti and Na slabs. Because of the initial 3D network of anatase, the reduced phase shows strong disorder due to cationic intermixing between the Ti and Na slabs and the refined chemical formula is (Na0.43Ti0.57)3a 0.22Na0.39Ti0.39)3bO2, where refers to vacancy. The presence of high valence Ti ions in the Na layers induces a contraction of the c-parameter as compared to the ordered phase. Upon desodiation, the structuremore » further amorphized and the local structure probed by PDF is shown to be similar to the anatase TiO2, suggesting that the 3D network is recovered. The reversible sodium insertion/deinsertion is thus attributed to the rhombohedral active phase formed during the first discharge, and an oxidized phase featuring the local structure of anatase. Due to the amorphous nature of the two phases, the potential-composition curves are characterized by a sloping curve. Lastly, a comparison between the intercalation of lithium and sodium into anatase TiO2 performed by DFT calculations confirmed that, for the sodiated phase, the rhombohedral structure is more stable than the tetragonal phase observed during the lithiation of nanoparticles.« less

Authors:
; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
European Commission - Community Research and Development Information Service (CORDIS) - Seventh Framework Programme (FP7); Engineering and Physical Sciences Research Council (EPSRC); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22), Scientific User Facilities Division
OSTI Identifier:
1372078
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 4; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; NaTiO2; disordered layered structure; pair distribution function; sodium-ion batteries

Citation Formats

Li, Wei, Fukunishi, Mika, Morgan, Benjamin J., Borkiewicz, Olaf J., Chapman, Karena W., Pralong, Valerie, Maignan, Antoine, Lebedev, Oleg I., Ma, Jiwei, Groult, Henri, Komaba, Shinichi, and Dambournet, Damien. A reversible phase transition for sodium insertion in anatase TiO2. United States: N. p., 2017. Web. doi:10.1021/acs.chemmater.7b00098.
Li, Wei, Fukunishi, Mika, Morgan, Benjamin J., Borkiewicz, Olaf J., Chapman, Karena W., Pralong, Valerie, Maignan, Antoine, Lebedev, Oleg I., Ma, Jiwei, Groult, Henri, Komaba, Shinichi, & Dambournet, Damien. A reversible phase transition for sodium insertion in anatase TiO2. United States. https://doi.org/10.1021/acs.chemmater.7b00098
Li, Wei, Fukunishi, Mika, Morgan, Benjamin J., Borkiewicz, Olaf J., Chapman, Karena W., Pralong, Valerie, Maignan, Antoine, Lebedev, Oleg I., Ma, Jiwei, Groult, Henri, Komaba, Shinichi, and Dambournet, Damien. Tue . "A reversible phase transition for sodium insertion in anatase TiO2". United States. https://doi.org/10.1021/acs.chemmater.7b00098. https://www.osti.gov/servlets/purl/1372078.
@article{osti_1372078,
title = {A reversible phase transition for sodium insertion in anatase TiO2},
author = {Li, Wei and Fukunishi, Mika and Morgan, Benjamin J. and Borkiewicz, Olaf J. and Chapman, Karena W. and Pralong, Valerie and Maignan, Antoine and Lebedev, Oleg I. and Ma, Jiwei and Groult, Henri and Komaba, Shinichi and Dambournet, Damien},
abstractNote = {Anatase TiO2 is a potential negative electrode for sodium-ion batteries. The sodium storage mechanism is, however, still under debate, yet its comprehension is required to optimize the electrochemical properties. To clarify the sodium storage mechanism occurring in anatase, we have used both electrochemical and chemical routes from which we obtained similar trends. During the first discharge, an irreversible plateau region is observed which corresponds to the insertion of Na+ within the interstitial sites of anatase and is accompanied by a drastic loss of the long-range order as revealed by X-ray diffraction, high resolution of high angle annular dark-field scanning transmission electron microscope (HAADF-STEM), and pair distribution function (PDF) analysis. Further structural analysis of the total scattering data indicates that the sodiated phase displays a layered-like rhombohedral R3m structure built from the stacking of Ti and Na slabs. Because of the initial 3D network of anatase, the reduced phase shows strong disorder due to cationic intermixing between the Ti and Na slabs and the refined chemical formula is (Na0.43Ti0.57)3a 0.22Na0.39Ti0.39)3bO2, where refers to vacancy. The presence of high valence Ti ions in the Na layers induces a contraction of the c-parameter as compared to the ordered phase. Upon desodiation, the structure further amorphized and the local structure probed by PDF is shown to be similar to the anatase TiO2, suggesting that the 3D network is recovered. The reversible sodium insertion/deinsertion is thus attributed to the rhombohedral active phase formed during the first discharge, and an oxidized phase featuring the local structure of anatase. Due to the amorphous nature of the two phases, the potential-composition curves are characterized by a sloping curve. Lastly, a comparison between the intercalation of lithium and sodium into anatase TiO2 performed by DFT calculations confirmed that, for the sodiated phase, the rhombohedral structure is more stable than the tetragonal phase observed during the lithiation of nanoparticles.},
doi = {10.1021/acs.chemmater.7b00098},
journal = {Chemistry of Materials},
number = 4,
volume = 29,
place = {United States},
year = {2017},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Galvanostatic discharge-charge curves of Na//TiO2 cells. The cells were cycled at 10 mA.g-1.

Save / Share:

Works referenced in this record:

Computational Dataset for "Reversible Magnesium and Aluminium-ions Insertion in Cation-Deficient Anatase TiO2"
dataset, January 2017

  • Morgan, Benjamin; Salanne, Mathieu; Dambournet, Damien
  • University of Bath
  • DOI: 10.15125/bath-00397

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Towards greener and more sustainable batteries for electrical energy storage
journal, November 2014


Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

Rationalization of Intercalation Potential and Redox Mechanism for A 2 Ti 3 O 7 (A = Li, Na)
journal, December 2013

  • Rousse, Gwenaelle; Arroyo-de Dompablo, M. Elena; Senguttuvan, Premkumar
  • Chemistry of Materials, Vol. 25, Issue 24
  • DOI: 10.1021/cm4032336

Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4
journal, May 1989


Evidence of Two-Phase Formation upon Lithium Insertion into the Li[sub 1.33]Ti[sub 1.67]O[sub 4] Spinel
journal, January 1999

  • Scharner, S.
  • Journal of The Electrochemical Society, Vol. 146, Issue 3
  • DOI: 10.1149/1.1391692

Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries
journal, May 2013

  • Sun, Yang; Zhao, Liang; Pan, Huilin
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2878

Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries
journal, May 2013

  • Senguttuvan, P.; Rousse, G.; Vezin, H.
  • Chemistry of Materials, Vol. 25, Issue 12
  • DOI: 10.1021/cm401181b

New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems
journal, January 2013

  • Shirpour, Mona; Cabana, Jordi; Doeff, Marca
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee41037d

A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries
journal, August 2013

  • Wang, Yuesheng; Yu, Xiqian; Xu, Shuyin
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3365

An Ultrastable Anode for Long-Life Room-Temperature Sodium-Ion Batteries
journal, June 2014

  • Yu, Haijun; Ren, Yang; Xiao, Dongdong
  • Angewandte Chemie International Edition, Vol. 53, Issue 34
  • DOI: 10.1002/anie.201404549

NaTiO 2 : a layered anode material for sodium-ion batteries
journal, January 2015

  • Wu, Di; Li, Xin; Xu, Bo
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE03045A

Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries
journal, January 2014

  • Kim, Ki-Tae; Ali, Ghulam; Chung, Kyung Yoon
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl402747x

Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries
journal, January 2013

  • Xu, Yang; Memarzadeh Lotfabad, Elmira; Wang, Huanlei
  • Chemical Communications, Vol. 49, Issue 79
  • DOI: 10.1039/c3cc45254a

Anatase TiO 2 : Better Anode Material Than Amorphous and Rutile Phases of TiO 2 for Na-Ion Batteries
journal, August 2015


Amorphous TiO 2 Nanotube Anode for Rechargeable Sodium Ion Batteries
journal, September 2011

  • Xiong, Hui; Slater, Michael D.; Balasubramanian, Mahalingam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 20
  • DOI: 10.1021/jz2012066

Lithium insertion into TiO2 (anatase): electrochemistry, Raman spectroscopy, and isotope labeling
journal, March 2014


Lithium Intercalation into Mesoporous Anatase with an Ordered 3D Pore Structure
journal, March 2010

  • Ren, Yu; Hardwick, Laurence J.; Bruce, Peter G.
  • Angewandte Chemie, Vol. 122, Issue 14, p. 2624-2628
  • DOI: 10.1002/ange.200907099

Properties and Promises of Nanosized Insertion Materials for Li-Ion Batteries
journal, February 2012

  • Wagemaker, Marnix; Mulder, Fokko M.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar2001793

Impact of Particle Size on the Non-Equilibrium Phase Transition of Lithium-Inserted Anatase TiO 2
journal, February 2014

  • Shen, Kun; Chen, Hao; Klaver, Frits
  • Chemistry of Materials, Vol. 26, Issue 4
  • DOI: 10.1021/cm4037346

Anatase TiO2 nanoparticles for high power sodium-ion anodes
journal, April 2014


Extraordinary Performance of Carbon-Coated Anatase TiO 2 as Sodium-Ion Anode
journal, December 2015

  • Tahir, Muhammad Nawaz; Oschmann, Bernd; Buchholz, Daniel
  • Advanced Energy Materials, Vol. 6, Issue 4
  • DOI: 10.1002/aenm.201501489

Self-Supported Nanotube Arrays of Sulfur-Doped TiO 2 Enabling Ultrastable and Robust Sodium Storage
journal, January 2016


Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes
journal, September 2015


Unfolding the Mechanism of Sodium Insertion in Anatase TiO 2 Nanoparticles
journal, August 2014

  • Wu, Liming; Bresser, Dominic; Buchholz, Daniel
  • Advanced Energy Materials, Vol. 5, Issue 2
  • DOI: 10.1002/aenm.201401142

On the electrochemical encounter between sodium and mesoporous anatase TiO 2 as a Na-ion electrode
journal, January 2016

  • Louvain, N.; Henry, A.; Daenens, L.
  • CrystEngComm, Vol. 18, Issue 23
  • DOI: 10.1039/C5CE02598B

The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase
journal, January 2009

  • Borghols, W. J. H.; Lützenkirchen-Hecht, D.; Haake, U.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 27
  • DOI: 10.1039/b823142g

High Substitution Rate in TiO 2 Anatase Nanoparticles with Cationic Vacancies for Fast Lithium Storage
journal, July 2015


Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries
journal, July 2014


Rapid-acquisition pair distribution function (RA-PDF) analysis
journal, November 2003

  • Chupas, Peter J.; Qiu, Xiangyun; Hanson, Jonathan C.
  • Journal of Applied Crystallography, Vol. 36, Issue 6, p. 1342-1347
  • DOI: 10.1107/S0021889803017564

Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements
journal, May 2007

  • Chupas, Peter J.; Chapman, Karena W.; Lee, Peter L.
  • Journal of Applied Crystallography, Vol. 40, Issue 3
  • DOI: 10.1107/S0021889807007856

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/S0021889804011744

PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements
journal, October 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


GGA + U description of lithium intercalation into anatase TiO 2
journal, October 2010


Role of Lithium Ordering in the Li x TiO 2 Anatase → Titanate Phase Transition
journal, June 2011

  • Morgan, Benjamin J.; Watson, Graeme W.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 14
  • DOI: 10.1021/jz200718e

Lithium intercalation into TiO 2 (B): A comparison of LDA, GGA, and GGA+ U density functional calculations
journal, July 2012


Synthesis, Structure, and Magnetic Properties of NaTiO 2
journal, January 1998

  • Clarke, S. J.; Fowkes, A. J.; Harrison, A.
  • Chemistry of Materials, Vol. 10, Issue 1
  • DOI: 10.1021/cm970538c

Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries
journal, August 2011

  • Komaba, Shinichi; Murata, Wataru; Ishikawa, Toru
  • Advanced Functional Materials, Vol. 21, Issue 20
  • DOI: 10.1002/adfm.201100854

Structural classification and properties of the layered oxides
journal, January 1980


A study of the Na x TiO2 system by electrochemical deintercalation
journal, January 1983

  • Maazaz, A.; Delmas, C.; Hagenmuller, P.
  • Journal of Inclusion Phenomena, Vol. 1, Issue 1
  • DOI: 10.1007/BF00658014

Effect of surface energies and nano-particle size distribution on open circuit voltage of Li-electrodes
journal, April 2009


Reversible transformation from amorphouse Na3Fe3(SO4)2(OH)6 to crystallized NaFe3(SO4)2(OH)6 Jarosite-type hydroxysulfate
journal, October 2015


Large Impact of Particle Size on Insertion Reactions. A Case for Anatase Li x TiO 2
journal, April 2007

  • Wagemaker, Marnix; Borghols, Wouter J. H.; Mulder, Fokko M.
  • Journal of the American Chemical Society, Vol. 129, Issue 14
  • DOI: 10.1021/ja067733p

Single-phase Na1.0TiO2: solid-state synthesis and characterisation by high-resolution powder diffraction
journal, January 1996

  • Clarke, S. J.; Duggan, A. C.; Fowkes, A. J.
  • Chemical Communications, Issue 3
  • DOI: 10.1039/cc9960000409

Works referencing / citing this record:

The electrochemical storage mechanism in oxy-hydroxyfluorinated anatase for sodium-ion batteries
journal, January 2018

  • Li, Wei; Fukunishi, Mika; Morgan, Benjamin J.
  • Inorganic Chemistry Frontiers, Vol. 5, Issue 5
  • DOI: 10.1039/c8qi00185e

Advances of TiO 2 as Negative Electrode Materials for Sodium-Ion Batteries
journal, August 2018


Enhanced Ionic/Electronic Transport in Nano‐TiO 2 /Sheared CNT Composite Electrode for Na + Insertion‐based Hybrid Ion‐Capacitors
journal, November 2019

  • Luo, Sainan; Yuan, Tao; Soule, Luke
  • Advanced Functional Materials, Vol. 30, Issue 5
  • DOI: 10.1002/adfm.201908309

TiO 2 Nanostructures as Anode Materials for Li/Na-Ion Batteries
journal, March 2018

  • Vazquez-Santos, Maria B.; Tartaj, Pedro; Morales, Enrique
  • The Chemical Record, Vol. 18, Issue 7-8
  • DOI: 10.1002/tcr.201700103

Comprehensive New Insights and Perspectives into Ti-Based Anodes for Next-Generation Alkaline Metal (Na + , K + ) Ion Batteries
journal, August 2018


Pseudocapacitance of TiO 2− x /CNT Anodes for High-Performance Quasi-Solid-State Li-Ion and Na-Ion Capacitors
journal, April 2018


Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes
journal, February 2019


Advanced Characterization Techniques in Promoting Mechanism Understanding for Lithium-Sulfur Batteries
journal, March 2018

  • Zhao, Enyue; Nie, Kaihui; Yu, Xiqian
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201707543

Mg 2+ storage and mobility in anatase TiO 2 : the role of frustrated coordination
journal, January 2019

  • McColl, Kit; Corà, Furio
  • Journal of Materials Chemistry A, Vol. 7, Issue 8
  • DOI: 10.1039/c8ta09939a

Advanced Nanostructured Anode Materials for Sodium-Ion Batteries
journal, September 2017


Engineering Solid Electrolyte Interphase for Pseudocapacitive Anatase TiO 2 Anodes in Sodium-Ion Batteries
journal, May 2018

  • Xu, Zheng-Long; Lim, Kyungmi; Park, Kyu-Young
  • Advanced Functional Materials, Vol. 28, Issue 29
  • DOI: 10.1002/adfm.201802099

A High-Performance Sodium-Ion Hybrid Capacitor Constructed by Metal-Organic Framework-Derived Anode and Cathode Materials
journal, May 2018

  • Li, Hongxia; Lang, Junwei; Lei, Shulai
  • Advanced Functional Materials, Vol. 28, Issue 30
  • DOI: 10.1002/adfm.201800757

Mesoporous TiO 2 nanosheets anchored on graphene for ultra long life Na-ion batteries
journal, March 2018