DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-learning quantum Monte Carlo method in interacting fermion systems

Abstract

We present the self-learning Monte Carlo method is a powerful general-purpose numerical method recently introduced to simulate many-body systems. In this work, we extend it to an interacting fermion quantum system in the framework of the widely used determinant quantum Monte Carlo. This method can generally reduce the computational complexity and moreover can greatly suppress the autocorrelation time near a critical point. This enables us to simulate an interacting fermion system on a $100 × 100$ lattice even at the critical point and obtain critical exponents with high precision.

Authors:
 [1];  [2];  [2];  [2];  [1]
  1. Chinese Academy of Sciences, Beijing (China). Beijing National Laboratory for Condensed Matter Physics and Institute of Physics; University of Chinese Academy of Sciences, Beijing (China). School of Physical Sciences
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Department of Physics
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE
OSTI Identifier:
1424921
Alternate Identifier(s):
OSTI ID: 1371802
Grant/Contract Number:  
SC0010526
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 96; Journal Issue: 4; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Electron-correlation calculations; Many-body techniques; Monte Carlo methods

Citation Formats

Xu, Xiao Yan, Qi, Yang, Liu, Junwei, Fu, Liang, and Meng, Zi Yang. Self-learning quantum Monte Carlo method in interacting fermion systems. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.96.041119.
Xu, Xiao Yan, Qi, Yang, Liu, Junwei, Fu, Liang, & Meng, Zi Yang. Self-learning quantum Monte Carlo method in interacting fermion systems. United States. https://doi.org/10.1103/PhysRevB.96.041119
Xu, Xiao Yan, Qi, Yang, Liu, Junwei, Fu, Liang, and Meng, Zi Yang. Tue . "Self-learning quantum Monte Carlo method in interacting fermion systems". United States. https://doi.org/10.1103/PhysRevB.96.041119. https://www.osti.gov/servlets/purl/1424921.
@article{osti_1424921,
title = {Self-learning quantum Monte Carlo method in interacting fermion systems},
author = {Xu, Xiao Yan and Qi, Yang and Liu, Junwei and Fu, Liang and Meng, Zi Yang},
abstractNote = {We present the self-learning Monte Carlo method is a powerful general-purpose numerical method recently introduced to simulate many-body systems. In this work, we extend it to an interacting fermion quantum system in the framework of the widely used determinant quantum Monte Carlo. This method can generally reduce the computational complexity and moreover can greatly suppress the autocorrelation time near a critical point. This enables us to simulate an interacting fermion system on a $100 × 100$ lattice even at the critical point and obtain critical exponents with high precision.},
doi = {10.1103/PhysRevB.96.041119},
journal = {Physical Review B},
number = 4,
volume = 96,
place = {United States},
year = {Tue Jul 18 00:00:00 EDT 2017},
month = {Tue Jul 18 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Schematic phase diagram of the transverse-field Ising model coupled to Fermi surface. As a function of the transverse field, the system (both fermions and Ising spins) goes through a transition from ferromagnetic (FM) metal to paramagnetic (PM) metal. The black dot is the finite-temperature critical point [Tmore » = 1,hc = 2.774(1)] where we systematically demonstrate the superior performance of SLDQMC over DQMC. (b) Autocorrelation function C($τ$ ) for L = 16 system at the critical point in panel (a), for local update with DQMC, where the autocorrelation time is very long (larger than 600 sweeps). The autocorrelation function is defined as C($τ$ ) = (〈M(0)M($τ$ )〉 − 〈M2)/(〈M2〉 − 〈M2) with M($τ$ ) being the total magnetization of Ising spins for the $τ$th sweep.« less

Save / Share:

Works referenced in this record:

Quantum Monte Carlo study of the two-dimensional fermion Hubbard model
journal, August 2009


Non-Fermi-liquid behaviour in the heavy-fermion system
journal, November 1996


A Sharp Peak of the Zero-Temperature Penetration Depth at Optimal Composition in BaFe2(As1-xPx)2
journal, June 2012


Sign-Problem-Free Quantum Monte Carlo of the Onset of Antiferromagnetism in Metals
journal, December 2012


Self-learning Monte Carlo method
journal, January 2017


Non-Fermi-liquid behavior in d - and f -electron metals
journal, October 2001


Visualizing a bosonic symmetry protected topological phase in an interacting fermion model
journal, October 2016


What makes the Tc of monolayer FeSe on SrTiO3 so high: a sign-problem-free quantum Monte Carlo study
journal, June 2016


The Characterization of Topological Properties in Quantum Monte Carlo Simulations of the Kane–Mele–Hubbard Model
journal, December 2013

  • Meng, Zi Yang; Hung, Hsiang-Hsuan; Lang, Thomas C.
  • Modern Physics Letters B, Vol. 28, Issue 01
  • DOI: 10.1142/S0217984914300014

Single-hole dynamics in the t J model on a square lattice
journal, December 2000

  • Brunner, Michael; Assaad, Fakher F.; Muramatsu, Alejandro
  • Physical Review B, Vol. 62, Issue 23
  • DOI: 10.1103/PhysRevB.62.15480

Quantum critical point of Dirac fermion mass generation without spontaneous symmetry breaking
journal, December 2016


The loop algorithm
journal, January 2003


Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z2 gauge theories
journal, February 2017

  • Gazit, Snir; Randeria, Mohit; Vishwanath, Ashvin
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4028

Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons
journal, March 2016


Fermi-liquid instabilities at magnetic quantum phase transitions
journal, August 2007

  • Löhneysen, Hilbert v.; Rosch, Achim; Vojta, Matthias
  • Reviews of Modern Physics, Vol. 79, Issue 3
  • DOI: 10.1103/RevModPhys.79.1015

Phase diagram of the three-dimensional Hubbard model at half filling
journal, October 2000

  • Staudt, R.; Dzierzawa, M.; Muramatsu, A.
  • The European Physical Journal B, Vol. 17, Issue 3
  • DOI: 10.1007/s100510070120

Quantum spin liquid emerging in two-dimensional correlated Dirac fermions
journal, April 2010


Quantum Monte Carlo with directed loops
journal, October 2002


Spectral Properties of the One-Dimensional Hubbard Model
journal, August 1994


Topological phase transitions with SO(4) symmetry in (2+1)D interacting Dirac fermions
journal, February 2017


Polynomial-Time Approximation Algorithms for the Ising Model
journal, October 1993

  • Jerrum, Mark; Sinclair, Alistair
  • SIAM Journal on Computing, Vol. 22, Issue 5
  • DOI: 10.1137/0222066

Collective Monte Carlo Updating for Spin Systems
journal, January 1989


Non-Fermi-liquid behavior of large- N B quantum critical metals
journal, April 2014


Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states
journal, March 2016


Quantum phase transitions in the Kane-Mele-Hubbard model
journal, March 2012


Competing Orders in a Nearly Antiferromagnetic Metal
journal, August 2016


Numerical Stability and the sign Problem in the Determinant Quantum Monte Carlo Method
journal, August 2005

  • Loh, E. Y.; Gubernatis, J. E.; Scalettar, R. T.
  • International Journal of Modern Physics C, Vol. 16, Issue 08
  • DOI: 10.1142/S0129183105007911

Nonuniversal critical dynamics in Monte Carlo simulations
journal, January 1987


The Ising model with a transverse field. II. Ground state properties
journal, October 1971


Monte Carlo calculations of coupled boson-fermion systems. I
journal, October 1981


Fermionic quantum criticality in honeycomb and π -flux Hubbard models: Finite-size scaling of renormalization-group-invariant observables from quantum Monte Carlo
journal, April 2015

  • Parisen Toldin, Francesco; Hohenadler, Martin; Assaad, Fakher F.
  • Physical Review B, Vol. 91, Issue 16
  • DOI: 10.1103/PhysRevB.91.165108

Instability of the Quantum-Critical Point of Itinerant Ferromagnets
journal, April 2004


Simple Fermionic Model of Deconfined Phases and Phase Transitions
journal, December 2016


Self-learning Monte Carlo method and cumulative update in fermion systems
journal, June 2017


Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2 + 1 dimensions
journal, October 2009


Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5
journal, March 2006


Quantum Transition between an Antiferromagnetic Mott Insulator and d x 2 y 2 Superconductor in Two Dimensions
journal, November 1996


Critical Fermi surfaces and non-Fermi liquid metals
journal, July 2008


Ising Nematic Quantum Critical Point in a Metal: A Monte Carlo Study
journal, August 2016


Topological Invariant and Quantum Spin Models from Magnetic π Fluxes in Correlated Topological Insulators
journal, February 2013


Spin Conservation and Fermi Liquid near a Ferromagnetic Quantum Critical Point
journal, November 2009


Perturbative non-Fermi liquids from dimensional regularization
journal, December 2013


Quantum spin-liquid emerging in two-dimensional correlated Dirac fermions
text, January 2010


Quantum phase transitions in the Kane-Mele-Hubbard model
text, January 2011


Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals
text, January 2012


Perturbative non-Fermi liquids from dimensional regularization
text, January 2013


Topological phase transitions with SO(4) symmetry in (2+1)d interacting Dirac fermions
text, January 2016


Visualizing a Bosonic Symmetry Protected Topological Phase in an Interacting Fermion Model
text, January 2016


Self-Learning Monte Carlo Method
text, January 2016


Phase diagram of the three-dimensional Hubbard model at half filling
text, January 2000


Fermi-liquid instabilities at magnetic quantum phase transitions
text, January 2006


Works referencing / citing this record:

Itinerant quantum critical point with fermion pockets and hotspots
journal, August 2019

  • Liu, Zi Hong; Pan, Gaopei; Xu, Xiao Yan
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 34
  • DOI: 10.1073/pnas.1901751116

Accelerating lattice quantum Monte Carlo simulations using artificial neural networks: Application to the Holstein model
journal, July 2019


Restricted Boltzmann machine learning for solving strongly correlated quantum systems
journal, November 2017


Smallest neural network to learn the Ising criticality
journal, August 2018


Policy-guided Monte Carlo: Reinforcement-learning Markov chain dynamics
journal, December 2018


Discriminative Cooperative Networks for Detecting Phase Transitions
journal, April 2018


Status and future perspectives for lattice gauge theory calculations to the exascale and beyond
journal, November 2019

  • Joó, Bálint; Jung, Chulwoo; Christ, Norman H.
  • The European Physical Journal A, Vol. 55, Issue 11
  • DOI: 10.1140/epja/i2019-12919-7

Self-Learning Monte Carlo Method: Continuous-Time Algorithm
text, January 2017


Itinerant quantum critical point with frustration and non-Fermi-liquid
text, January 2017


Revisiting the Hybrid Quantum Monte Carlo Method for Hubbard and Electron-Phonon Models
text, January 2017


Machine Learning Topological Invariants with Neural Networks
text, January 2017


Self-learning Monte Carlo with Deep Neural Networks
text, January 2018


Deep Learning Topological Invariants of Band Insulators
text, January 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.