skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study

Abstract

The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral form and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [2];  [2];  [2];  [1]
  1. Arizona State Univ., Tempe, AZ (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States); Sigray, Concord, CA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1371555
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Synchrotron Radiation (Online)
Additional Journal Information:
Journal Name: Journal of Synchrotron Radiation (Online); Journal Volume: 24; Journal Issue: 1; Journal ID: ISSN 1600-5775
Publisher:
International Union of Crystallography
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; thin film characterization; X-ray fluorescence; CIGS; multilayered structure; solar cell

Citation Formats

West, Bradley M., Stuckelberger, Michael, Jeffries, April, Gangam, Srikanth, Lai, Barry, Stripe, Benjamin, Maser, Jorg, Rose, Volker, Vogt, Stefan, and Bertoni, Mariana I. X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study. United States: N. p., 2017. Web. doi:10.1107/S1600577516015721.
West, Bradley M., Stuckelberger, Michael, Jeffries, April, Gangam, Srikanth, Lai, Barry, Stripe, Benjamin, Maser, Jorg, Rose, Volker, Vogt, Stefan, & Bertoni, Mariana I. X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study. United States. doi:10.1107/S1600577516015721.
West, Bradley M., Stuckelberger, Michael, Jeffries, April, Gangam, Srikanth, Lai, Barry, Stripe, Benjamin, Maser, Jorg, Rose, Volker, Vogt, Stefan, and Bertoni, Mariana I. Sun . "X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study". United States. doi:10.1107/S1600577516015721. https://www.osti.gov/servlets/purl/1371555.
@article{osti_1371555,
title = {X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study},
author = {West, Bradley M. and Stuckelberger, Michael and Jeffries, April and Gangam, Srikanth and Lai, Barry and Stripe, Benjamin and Maser, Jorg and Rose, Volker and Vogt, Stefan and Bertoni, Mariana I.},
abstractNote = {The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral form and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.},
doi = {10.1107/S1600577516015721},
journal = {Journal of Synchrotron Radiation (Online)},
number = 1,
volume = 24,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Coupled tomography and distinct-element-method approach to exploring the granular media microstructure in a jamming hourglass
journal, June 2008


Archimedes brought to light
journal, November 2007


Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells
journal, January 2011

  • Bertoni, M. I.; Fenning, D. P.; Rinio, M.
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee02083h

Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten
journal, January 1852


X-ray fluorescence microprobe imaging in biology and medicine
journal, January 2006

  • Paunesku, Tatjana; Vogt, Stefan; Maser, Jörg
  • Journal of Cellular Biochemistry, Vol. 99, Issue 6
  • DOI: 10.1002/jcb.21047

Atomic radiative and radiationless yields for K and L shells
journal, April 1979

  • Krause, M. O.
  • Journal of Physical and Chemical Reference Data, Vol. 8, Issue 2
  • DOI: 10.1063/1.555594

Chemical natures and distributions of metal impurities in multicrystalline silicon materials
journal, January 2006

  • Buonassisi, T.; Istratov, A. A.; Pickett, M. D.
  • Progress in Photovoltaics: Research and Applications, Vol. 14, Issue 6
  • DOI: 10.1002/pip.690

Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution
journal, August 2010

  • de Jonge, M. D.; Holzner, C.; Baines, S. B.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 36
  • DOI: 10.1073/pnas.1001469107

Data analysis for X-ray fluorescence imaging
journal, March 2003

  • Vogt, S.; Maser, J.; Jacobsen, C.
  • Journal de Physique IV (Proceedings), Vol. 104
  • DOI: 10.1051/jp4:20030156

Combined three-dimensional structure and chemistry imaging with nanoscale resolution
journal, September 2014


Cationic Contamination Effects on Polymer Electrolyte Membrane Fuel Cell Performance
journal, January 2011

  • Kienitz, Brian; Pivovar, Bryan; Zawodzinski, Tom
  • Journal of The Electrochemical Society, Vol. 158, Issue 9
  • DOI: 10.1149/1.3610986

Calculation of x-ray fluorescence intensities from bulk and multilayer samples
journal, June 1990


Nuclear microprobe – synchrotron synergy: Towards integrated quantitative real-time elemental imaging using PIXE and SXRF
journal, April 2005

  • Ryan, C. G.; Etschmann, B. E.; Vogt, S.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 231, Issue 1-4
  • DOI: 10.1016/j.nimb.2005.01.054

A Review, Bibliography, and Tabulation of K , L , and Higher Atomic Shell X‐Ray Fluorescence Yields
journal, March 1994

  • Hubbell, J. H.; Trehan, P. N.; Singh, Nirmal
  • Journal of Physical and Chemical Reference Data, Vol. 23, Issue 2
  • DOI: 10.1063/1.555955

Ptychographic X-ray computed tomography at the nanoscale
journal, September 2010

  • Dierolf, Martin; Menzel, Andreas; Thibault, Pierre
  • Nature, Vol. 467, Issue 7314
  • DOI: 10.1038/nature09419

A hard X-ray nanoprobe beamline for nanoscale microscopy
journal, September 2012

  • Winarski, Robert P.; Holt, Martin V.; Rose, Volker
  • Journal of Synchrotron Radiation, Vol. 19, Issue 6
  • DOI: 10.1107/S0909049512036783

Nanometer focusing of hard x rays by phase zone plates
journal, May 1999

  • Yun, W.; Lai, B.; Cai, Z.
  • Review of Scientific Instruments, Vol. 70, Issue 5
  • DOI: 10.1063/1.1149744

X-ray microtomography study of the compaction process of rods under tapping
journal, May 2012


MAPS : A set of software tools for analysis and visualization of 3D X-ray fluorescence data sets
journal, March 2003


Nanoscale X-ray imaging
journal, December 2010


Combining tomographic imaging and DEM simulations to investigate the structure of experimental sphere packings
journal, January 2010

  • Delaney, Gary W.; Di Matteo, T.; Aste, Tomaso
  • Soft Matter, Vol. 6, Issue 13
  • DOI: 10.1039/b927490a

A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra
journal, January 2007

  • Solé, V. A.; Papillon, E.; Cotte, M.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 62, Issue 1
  • DOI: 10.1016/j.sab.2006.12.002

Hard-x-ray microscopy with Fresnel zone plates reaches 40nm Rayleigh resolution
journal, March 2008

  • Chu, Y. S.; Yi, J. M.; De Carlo, F.
  • Applied Physics Letters, Vol. 92, Issue 10
  • DOI: 10.1063/1.2857476

11 nm hard X-ray focus from a large-aperture multilayer Laue lens
journal, December 2013

  • Huang, Xiaojing; Yan, Hanfei; Nazaretski, Evgeny
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03562