skip to main content


Title: Conduction band position tuning and Ga-doping in (Cd,Zn)S alloy thin films

In recent years, the number of novel photovoltaic absorber materials under exploration has rapidly increased. However, to reap the most benefit from these new absorbers, alternative device structures and components must also be considered. In particular, the choice of a heterojunction partner, or contact layer, is critical to device optimization. In this work, we explore alternative n-type contact layer candidates that could be widely applicable to a variety of new absorbers. We use theory to calculate the band edge tuning provided by a variety of II-VI alloy systems, and select the (Cd,Zn)S system as one that affords a wide range of conduction band tuning. The synthesis of (Cd,Zn)S alloys is explored using atomic layer deposition, which afforded precise compositional control and produced crystalline thin films. The predicted tuning of the band gap and conduction band minimum is confirmed through X-ray photoelectron spectroscopy and optical absorption measurements. In addition, we investigated Ga-doping in Cd 0.6Zn 0.4S films to decrease their series resistance when used as contact layers in photovoltaic devices. In conclusion, this study provides a framework for exploring and optimizing alternative contact layer materials, which will prove critical to the success of new PV absorbers.
ORCiD logo [1] ;  [2] ;  [1] ;  [2] ;  [2] ;  [3] ;  [2]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  3. Colorado School of Mines, Golden, CO (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 2052-1537; MCFAC5
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Materials Chemistry Frontiers
Additional Journal Information:
Journal Volume: 1; Journal Issue: 7; Journal ID: ISSN 2052-1537
Royal Society of Chemistry
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; absorber materials; photovoltaics; thin films
OSTI Identifier: