skip to main content

DOE PAGESDOE PAGES

Title: Impact of oleylamine: Oleic acid ratio on the morphology of yttria nanomaterials

In this paper, the impact on the final morphology of yttria (Y 2O 3) nanoparticles from different ratios (100/0, 90/10, 65/35, and 50/50) of oleylamine (ON) and oleic acid (OA) via a solution precipitation route has been determined. In all instances, powder X-ray diffraction indicated that the cubic Y 2O 3 phase (PDF #00-025-1200) with the space group I-3a (206) had been formed. Analysis of the collected FTIR data revealed the presence of stretches and bends consistent with ON and OA, for all ratios investigated, except the 100/0. Transmission electron microscopy images revealed regular and elongated hexagons were produced for the ON (100/0) sample. As OA was added, the nanoparticle morphology changed to lamellar pillars (90/10), then irregular particles (65/35), and finally plates (50/50). The formation of the hexagonal-shaped nanoparticles was determined to be due to the preferential adsorption of ON onto the {101} planes. As OA was added to the reaction mixture, it was found that the {111} planes were preferentially coated, replacing ON from the surface, resulting in the various morphologies noted. The roles of the ratio of ON/OA in the synthesis of the nanocrystals were elucidated in the formation of the various Y 2O 3 morphologies, asmore » well as a possible growth mechanism based on the experimental data.« less
Authors:
 [1] ; ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
SAND-2017-5499J
Journal ID: ISSN 0022-2461; PII: 1042
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Journal of Materials Science
Additional Journal Information:
Journal Volume: 52; Journal Issue: 13; Journal ID: ISSN 0022-2461
Publisher:
Springer
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; Y2O3; hexagonal nanomaterials; growth mechanism; crystal plane
OSTI Identifier:
1371482