skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optically thin hybrid cavity for terahertz photo-conductive detectors

Abstract

Here, the efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

Authors:
 [1];  [1]; ORCiD logo [1];  [2];  [2];  [2];  [3]
  1. Univ. College London, London (United Kingdom)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  3. Univ. College London, London (United Kingdom); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1371477
Report Number(s):
SAND-2016-9000J
Journal ID: ISSN 0003-6951; 655051
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 110; Journal Issue: 4; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Thompson, Robert J., Siday, T., Glass, S., Luk, T. S., Reno, J. L., Brener, I., and Mitrofanov, O. Optically thin hybrid cavity for terahertz photo-conductive detectors. United States: N. p., 2017. Web. https://doi.org/10.1063/1.4974482.
Thompson, Robert J., Siday, T., Glass, S., Luk, T. S., Reno, J. L., Brener, I., & Mitrofanov, O. Optically thin hybrid cavity for terahertz photo-conductive detectors. United States. https://doi.org/10.1063/1.4974482
Thompson, Robert J., Siday, T., Glass, S., Luk, T. S., Reno, J. L., Brener, I., and Mitrofanov, O. Mon . "Optically thin hybrid cavity for terahertz photo-conductive detectors". United States. https://doi.org/10.1063/1.4974482. https://www.osti.gov/servlets/purl/1371477.
@article{osti_1371477,
title = {Optically thin hybrid cavity for terahertz photo-conductive detectors},
author = {Thompson, Robert J. and Siday, T. and Glass, S. and Luk, T. S. and Reno, J. L. and Brener, I. and Mitrofanov, O.},
abstractNote = {Here, the efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.},
doi = {10.1063/1.4974482},
journal = {Applied Physics Letters},
number = 4,
volume = 110,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Hybridised extraordinary optical transmission in plasmonic cavity
journal, November 2014


Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors
journal, December 2011

  • Vitiello, Miriam S.; Coquillat, Dominique; Viti, Leonardo
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl2030486

Plasmonics for improved photovoltaic devices
journal, February 2010

  • Atwater, Harry A.; Polman, Albert
  • Nature Materials, Vol. 9, Issue 3, p. 205-213
  • DOI: 10.1038/nmat2629

3  μ m aperture probes for near-field terahertz transmission microscopy
journal, January 2014

  • Macfaden, Alexander J.; Reno, John L.; Brener, Igal
  • Applied Physics Letters, Vol. 104, Issue 1
  • DOI: 10.1063/1.4861621

Gate-controlled terahertz single electron photovoltaic effect in self-assembled InAs quantum dots
journal, September 2015

  • Zhang, Y.; Shibata, K.; Nagai, N.
  • Applied Physics Letters, Vol. 107, Issue 10
  • DOI: 10.1063/1.4930023

Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas
journal, February 1997

  • Matsuura, Shuji; Tani, Masahiko; Sakai, Kiyomi
  • Applied Physics Letters, Vol. 70, Issue 5
  • DOI: 10.1063/1.118337

Photoconductive Terahertz Near-Field Detector with a Hybrid Nanoantenna Array Cavity
journal, November 2015


Light Trapping for Solar Fuel Generation with Mie Resonances
journal, February 2014

  • Kim, Soo Jin; Thomann, Isabell; Park, Junghyun
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404575e

Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States
journal, December 2015


Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations
journal, March 2015


High performance optical absorber based on a plasmonic metamaterial
journal, June 2010

  • Hao, Jiaming; Wang, Jing; Liu, Xianliang
  • Applied Physics Letters, Vol. 96, Issue 25, Article No. 251104
  • DOI: 10.1063/1.3442904

Nanoplasmonic Terahertz Photoconductive Switch on GaAs
journal, February 2012

  • Heshmat, Barmak; Pahlevaninezhad, Hamid; Pang, Yuanjie,
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303314a

Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells
journal, January 2013

  • Simovski, Constantin; Morits, Dmitry; Voroshilov, Pavel
  • Optics Express, Vol. 21, Issue S4
  • DOI: 10.1364/OE.21.00A714

Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas
journal, February 2014

  • Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona
  • Applied Physics Letters, Vol. 104, Issue 8
  • DOI: 10.1063/1.4866807

Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes
journal, March 2013

  • Berry, C. W.; Wang, N.; Hashemi, M. R.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2638

Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings
journal, June 2011

  • Munday, Jeremy N.; Atwater, Harry A.
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl101875t

Single Nanowire Photoconductive Terahertz Detectors
journal, December 2014

  • Peng, Kun; Parkinson, Patrick; Fu, Lan
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl5033843

Advanced Photoconductive Terahertz Optoelectronics Based on Nano-Antennas and Nano-Plasmonic Light Concentrators
journal, May 2015


Resonant-cavity-enhanced subwavelength metal–semiconductor–metal photodetector
journal, August 2003

  • Collin, Stéphane; Pardo, Fabrice; Pelouard, Jean-Luc
  • Applied Physics Letters, Vol. 83, Issue 8
  • DOI: 10.1063/1.1604942

Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses
journal, December 2000

  • Kono, Shunsuke; Tani, Masahiko; Gu, Ping
  • Applied Physics Letters, Vol. 77, Issue 25
  • DOI: 10.1063/1.1333403

Electron transport properties in GaAs at high electric fields
journal, September 1980


Branchlike nano-electrodes for enhanced terahertz emission in photomixers
journal, June 2015


Plasmon-Enhanced Terahertz Photodetection in Graphene
journal, June 2015


Interference theory of metamaterial perfect absorbers
journal, January 2012


Ultrafast graphene-based broadband THz detector
journal, July 2013

  • Mittendorff, Martin; Winnerl, Stephan; Kamann, Josef
  • Applied Physics Letters, Vol. 103, Issue 2
  • DOI: 10.1063/1.4813621

Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices
journal, September 2015

  • Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep13817

    Works referencing / citing this record:

    An efficient terahertz detector based on an optical hybrid cavity
    conference, March 2018

    • Siday, Tom; Thompson, Robert J.; Glass, Samuel
    • Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI
    • DOI: 10.1117/12.2290971