DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fully CMOS-compatible titanium nitride nanoantennas

Abstract

CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. Finally, the optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

Authors:
 [1];  [2];  [3];  [2];  [3];  [2]
  1. Stanford Univ., CA (United States). Dept. of Applied Physics; Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  2. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  3. Stanford Univ., CA (United States). Dept. of Physics
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1371150
Grant/Contract Number:  
SC0001293
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 108; Journal Issue: 5; Related Information: LMI partners with California Institute of Technology (lead); Harvard University; University of Illinois, Urbana-Champaign; Lawrence Berkeley National Laboratory; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; solar (photovoltaic); solid state lighting; phonons; thermal conductivity; electrodes - solar; materials and chemistry by design; optics; synthesis (novel materials); synthesis (self-assembly)

Citation Formats

Briggs, Justin A., Naik, Gururaj V., Petach, Trevor A., Baum, Brian K., Goldhaber-Gordon, David, and Dionne, Jennifer A. Fully CMOS-compatible titanium nitride nanoantennas. United States: N. p., 2016. Web. doi:10.1063/1.4941413.
Briggs, Justin A., Naik, Gururaj V., Petach, Trevor A., Baum, Brian K., Goldhaber-Gordon, David, & Dionne, Jennifer A. Fully CMOS-compatible titanium nitride nanoantennas. United States. https://doi.org/10.1063/1.4941413
Briggs, Justin A., Naik, Gururaj V., Petach, Trevor A., Baum, Brian K., Goldhaber-Gordon, David, and Dionne, Jennifer A. Fri . "Fully CMOS-compatible titanium nitride nanoantennas". United States. https://doi.org/10.1063/1.4941413. https://www.osti.gov/servlets/purl/1371150.
@article{osti_1371150,
title = {Fully CMOS-compatible titanium nitride nanoantennas},
author = {Briggs, Justin A. and Naik, Gururaj V. and Petach, Trevor A. and Baum, Brian K. and Goldhaber-Gordon, David and Dionne, Jennifer A.},
abstractNote = {CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. Finally, the optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.},
doi = {10.1063/1.4941413},
journal = {Applied Physics Letters},
number = 5,
volume = 108,
place = {United States},
year = {Fri Feb 05 00:00:00 EST 2016},
month = {Fri Feb 05 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 77 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing
journal, January 2003

  • Kim, H.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 21, Issue 6
  • DOI: 10.1116/1.1622676

Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures
journal, October 2012

  • Christopher, Phillip; Xin, Hongliang; Marimuthu, Andiappan
  • Nature Materials, Vol. 11, Issue 12
  • DOI: 10.1038/nmat3454

Investigations of titanium nitride as metal gate material, elaborated by metal organic atomic layer deposition using TDMAT and NH3
journal, December 2005


Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles
journal, June 2004


Graphene plasmonics for tunable terahertz metamaterials
journal, September 2011


Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]
journal, January 2011

  • Naik, Gururaj V.; Kim, Jongbum; Boltasseva, Alexandra
  • Optical Materials Express, Vol. 1, Issue 6
  • DOI: 10.1364/OME.1.001090

Refractory Plasmonics
journal, April 2014


Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber
journal, October 2014


Atomic layer deposition of titanium nitride from TDMAT precursor
journal, January 2009


Searching for better plasmonic materials
journal, March 2010


Low-Loss Plasmonic Metamaterials
journal, January 2011


Aluminum for Plasmonics
journal, December 2013

  • Knight, Mark W.; King, Nicholas S.; Liu, Lifei
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405495q

Influences of metal, non-metal precursors, and substrates on atomic layer deposition processes for the growth of selected functional electronic materials
journal, December 2013

  • Lee, Sang Woon; Choi, Byung Joon; Eom, Taeyong
  • Coordination Chemistry Reviews, Vol. 257, Issue 23-24
  • DOI: 10.1016/j.ccr.2013.04.010

Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles
journal, November 2013

  • Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl4033457

Alternative Plasmonic Materials: Beyond Gold and Silver
journal, May 2013

  • Naik, Gururaj V.; Shalaev, Vladimir M.; Boltasseva, Alexandra
  • Advanced Materials, Vol. 25, Issue 24
  • DOI: 10.1002/adma.201205076

Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer
journal, March 2009


Surface Free Energy of Alloy Nitride Coatings Deposited Using Closed Field Unbalanced Magnetron Sputter Ion Plating
journal, January 2006


A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging
conference, December 2007


Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials
journal, May 2014

  • Naik, G. V.; Saha, B.; Liu, J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 21
  • DOI: 10.1073/pnas.1319446111

Growth Kinetics and Oxidation Mechanism of ALD TiN Thin Films Monitored by In Situ Spectroscopic Ellipsometry
journal, January 2011

  • Van Bui, H.; Groenland, A. W.; Aarnink, A. A. I.
  • Journal of The Electrochemical Society, Vol. 158, Issue 3
  • DOI: 10.1149/1.3530090

Biosensing with plasmonic nanosensors
journal, June 2008

  • Anker, Jeffrey N.; Hall, W. Paige; Lyandres, Olga
  • Nature Materials, Vol. 7, Issue 6
  • DOI: 10.1038/nmat2162

A review of the optical properties of alloys and intermetallics for plasmonics
journal, March 2010


Electrodynamics of Solids
book, January 2010


Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures
journal, September 2015


Titanium nitride as a plasmonic material for visible and near-infrared wavelengths
journal, January 2012

  • Naik, Gururaj V.; Schroeder, Jeremy L.; Ni, Xingjie
  • Optical Materials Express, Vol. 2, Issue 4
  • DOI: 10.1364/OME.2.000478

In situ spectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma-assisted atomic layer deposition
journal, July 2006

  • Langereis, E.; Heil, S. B. S.; van de Sanden, M. C. M.
  • Journal of Applied Physics, Vol. 100, Issue 2
  • DOI: 10.1063/1.2214438

Searching for Better Plasmonic Materials
preprint, January 2009


Works referencing / citing this record:

Plasmon‐Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage
journal, December 2018

  • Mascaretti, Luca; Dutta, Aveek; Kment, Štěpán
  • Advanced Materials, Vol. 31, Issue 31
  • DOI: 10.1002/adma.201805513

Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride
journal, March 2017

  • Naldoni, Alberto; Guler, Urcan; Wang, Zhuoxian
  • Advanced Optical Materials, Vol. 5, Issue 15
  • DOI: 10.1002/adom.201601031

Large-Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars
journal, September 2017

  • Chirumamilla, Manohar; Chirumamilla, Anisha; Yang, Yuanqing
  • Advanced Optical Materials, Vol. 5, Issue 22
  • DOI: 10.1002/adom.201700552

Strontium Niobate for Near‐Infrared Plasmonics
journal, July 2019

  • Dutta, Aveek; Wan, Dongyang; Yan, Bixing
  • Advanced Optical Materials, Vol. 7, Issue 19
  • DOI: 10.1002/adom.201900401

Tunable plasmonic HfN nanoparticles and arrays
journal, January 2019

  • Askes, Sven H. C.; Schilder, Nick J.; Zoethout, Erwin
  • Nanoscale, Vol. 11, Issue 42
  • DOI: 10.1039/c9nr07683b

Temperature-dependent optical properties of titanium nitride
journal, March 2017

  • Briggs, Justin A.; Naik, Gururaj V.; Zhao, Yang
  • Applied Physics Letters, Vol. 110, Issue 10
  • DOI: 10.1063/1.4977840

Chiro-plasmonic refractory metamaterial with titanium nitride (TiN) core–shell nanohelices
journal, April 2018

  • Venkataramanababu, Sruthi; Nair, Greshma; Deshpande, Preeti
  • Nanotechnology, Vol. 29, Issue 25
  • DOI: 10.1088/1361-6528/aabb4a

Wrinkled titanium nitride nanocomposite for robust bendable electrodes
journal, September 2019


Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths
journal, January 2017


Highly Plasmonic Titanium Nitride by Room-Temperature Sputtering
journal, October 2019