DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films

Abstract

Using photoluminescence (PL) spectroscopy we investigate the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Furthermore, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.

Authors:
 [1];  [2];  [2]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1370945
Grant/Contract Number:  
AC52-06NA25396; AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Chemical Physics
Additional Journal Information:
Journal Volume: 471; Journal Issue: C; Related Information: CASP partners with Los Alamos National Laboratory (lead); University of California, Irvine; University of Colorado; Colorado School of Mines; George Mason University; Los Alamos National Laboratory; University of Minnesota; National Renewable Energy Laboratory; Journal ID: ISSN 0301-0104
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Photoluminescence; PbS; Quantum dots; Nanocrystals; Bimolecular recombination

Citation Formats

Marshall, Ashley R., Beard, Matthew C., and Johnson, Justin C. Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films. United States: N. p., 2015. Web. doi:10.1016/j.chemphys.2015.07.007.
Marshall, Ashley R., Beard, Matthew C., & Johnson, Justin C. Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films. United States. https://doi.org/10.1016/j.chemphys.2015.07.007
Marshall, Ashley R., Beard, Matthew C., and Johnson, Justin C. Sat . "Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films". United States. https://doi.org/10.1016/j.chemphys.2015.07.007. https://www.osti.gov/servlets/purl/1370945.
@article{osti_1370945,
title = {Nongeminate radiative recombination of free charges in cation-exchanged PbS quantum dot films},
author = {Marshall, Ashley R. and Beard, Matthew C. and Johnson, Justin C.},
abstractNote = {Using photoluminescence (PL) spectroscopy we investigate the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Furthermore, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.},
doi = {10.1016/j.chemphys.2015.07.007},
journal = {Chemical Physics},
number = C,
volume = 471,
place = {United States},
year = {Sat Aug 01 00:00:00 EDT 2015},
month = {Sat Aug 01 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit
journal, July 2012

  • Miller, Owen D.; Yablonovitch, Eli; Kurtz, Sarah R.
  • IEEE Journal of Photovoltaics, Vol. 2, Issue 3, p. 303-311
  • DOI: 10.1109/JPHOTOV.2012.2198434

Luminescence and current-voltage characteristics of solar cells and optoelectronic devices
journal, January 1992


Charge Trapping in Bright and Dark States of Coupled PbS Quantum Dot Films
journal, March 2012


Carrier Transport in PbS and PbSe QD Films Measured by Photoluminescence Quenching
journal, July 2014

  • Zhang, Jing; Tolentino, Jason; Smith, E. Ryan
  • The Journal of Physical Chemistry C, Vol. 118, Issue 29
  • DOI: 10.1021/jp504240u

Charge Generation in PbS Quantum Dot Solar Cells Characterized by Temperature-Dependent Steady-State Photoluminescence
journal, November 2014

  • Gao, Jianbo; Zhang, Jianbing; van de Lagemaat, Jao
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn506075s

Colloidal Quantum Dot Solar Cells Exploiting Hierarchical Structuring
journal, January 2015

  • Labelle, André J.; Thon, Susanna M.; Masala, Silvia
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504086v

Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange
journal, May 2014

  • Brown, Patrick R.; Kim, Donghun; Lunt, Richard R.
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn500897c

Hybrid passivated colloidal quantum dot solids
journal, July 2012

  • Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd
  • Nature Nanotechnology, Vol. 7, Issue 9
  • DOI: 10.1038/nnano.2012.127

Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study
journal, February 2011

  • Moreels, Iwan; Justo, Yolanda; De Geyter, Bram
  • ACS Nano, Vol. 5, Issue 3
  • DOI: 10.1021/nn103050w

Colloidal-quantum-dot photovoltaics using atomic-ligand passivation
journal, September 2011

  • Tang, Jiang; Kemp, Kyle W.; Hoogland, Sjoerd
  • Nature Materials, Vol. 10, Issue 10
  • DOI: 10.1038/nmat3118

Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells
journal, December 2013

  • Zhang, Jianbing; Gao, Jianbo; Miller, Elisa M.
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405236k

Thiols Passivate Recombination Centers in Colloidal Quantum Dots Leading to Enhanced Photovoltaic Device Efficiency
journal, November 2008

  • Barkhouse, D. Aaron R.; Pattantyus-Abraham, Andras G.; Levina, Larissa
  • ACS Nano, Vol. 2, Issue 11
  • DOI: 10.1021/nn800471c

Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells
journal, April 2015

  • Crisp, Ryan W.; Kroupa, Daniel M.; Marshall, Ashley R.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09945

Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells
journal, June 2014

  • Neo, Darren C. J.; Cheng, Cheng; Stranks, Samuel D.
  • Chemistry of Materials, Vol. 26, Issue 13
  • DOI: 10.1021/cm501595u

Ultrastable PbSe Nanocrystal Quantum Dots via in Situ Formation of Atomically Thin Halide Adlayers on PbSe(100)
journal, June 2014

  • Woo, Ju Young; Ko, Jae-Hyeon; Song, Jung Hoon
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja503957r

Air-stable n-type colloidal quantum dot solids
journal, June 2014

  • Ning, Zhijun; Voznyy, Oleksandr; Pan, Jun
  • Nature Materials, Vol. 13, Issue 8
  • DOI: 10.1038/nmat4007

Research Update: Comparison of salt- and molecular-based iodine treatments of PbS nanocrystal solids for solar cells
journal, February 2015

  • Jähnig, Fabian; Bozyigit, Deniz; Yarema, Olesya
  • APL Materials, Vol. 3, Issue 2
  • DOI: 10.1063/1.4907158

Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots
journal, February 2000


Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion
journal, October 2008


Variations in the Quantum Efficiency of Multiple Exciton Generation for a Series of Chemically Treated PbSe Nanocrystal Films
journal, February 2009

  • Beard, Matthew C.; Midgett, Aaron G.; Law, Matt
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl803600v

Third Generation Photovoltaics based on Multiple Exciton Generation in Quantum Confined Semiconductors
journal, October 2012

  • Beard, Matthew C.; Luther, Joseph M.; Semonin, Octavi E.
  • Accounts of Chemical Research, Vol. 46, Issue 6
  • DOI: 10.1021/ar3001958

Lifetime, Mobility, and Diffusion of Photoexcited Carriers in Ligand-Exchanged Lead Selenide Nanocrystal Films Measured by Time-Resolved Terahertz Spectroscopy
journal, January 2015

  • Guglietta, Glenn W.; Diroll, Benjamin T.; Gaulding, E. Ashley
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn506724h

Ultrafast Electron Trapping in Ligand-Exchanged Quantum Dot Assemblies
journal, January 2015

  • Turk, Michael E.; Vora, Patrick M.; Fafarman, Aaron T.
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn505862g

Time‐resolved measurements of carrier recombination in experimental semiconductor‐doped glasses: Confirmation of the role of Auger recombination
journal, January 1993

  • Ghanassi, M.; Schanne‐Klein, M. C.; Hache, F.
  • Applied Physics Letters, Vol. 62, Issue 1
  • DOI: 10.1063/1.108833

Photocarrier Recombination Dynamics in Perovskite CH 3 NH 3 PbI 3 for Solar Cell Applications
journal, August 2014

  • Yamada, Yasuhiro; Nakamura, Toru; Endo, Masaru
  • Journal of the American Chemical Society, Vol. 136, Issue 33
  • DOI: 10.1021/ja506624n

Bimolecular Recombination in Organic Photovoltaics
journal, April 2014


Transition from Thermodynamic to Kinetic-Limited Excitonic Energy Migration in Colloidal Quantum Dot Solids
journal, April 2014

  • Poulikakos, Lisa V.; Prins, Ferry; Tisdale, William A.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 15
  • DOI: 10.1021/jp502961v

Exponential band tails in polycrystalline semiconductor films
journal, May 1985


Sharp exponential band tails in highly disordered lead sulfide quantum dot arrays
journal, October 2012


Role of Bond Adaptability in the Passivation of Colloidal Quantum Dot Solids
journal, August 2013

  • Thon, Susanna M.; Ip, Alexander H.; Voznyy, Oleksandr
  • ACS Nano, Vol. 7, Issue 9
  • DOI: 10.1021/nn4021983

Bias-Stress Effect in 1,2-Ethanedithiol-Treated PbS Quantum Dot Field-Effect Transistors
journal, March 2012

  • Osedach, Timothy P.; Zhao, Ni; Andrew, Trisha L.
  • ACS Nano, Vol. 6, Issue 4
  • DOI: 10.1021/nn3008788

Control of PbSe Quantum Dot Surface Chemistry and Photophysics Using an Alkylselenide Ligand
journal, May 2012

  • Hughes, Barbara K.; Ruddy, Daniel A.; Blackburn, Jeffrey L.
  • ACS Nano, Vol. 6, Issue 6
  • DOI: 10.1021/nn301405j

Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine
journal, November 2012

  • Bae, Wan Ki; Joo, Jin; Padilha, Lazaro A.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309783v

Temperature and excitation power dependent photoluminescence intensity of GaInN quantum wells with varying charge carrier wave function overlap
journal, February 2010

  • Netzel, C.; Hoffmann, V.; Wernicke, T.
  • Journal of Applied Physics, Vol. 107, Issue 3
  • DOI: 10.1063/1.3294624

Electrical Transport in Colloidal Quantum Dot Films
journal, April 2012

  • Guyot-Sionnest, Philippe
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 9
  • DOI: 10.1021/jz300048y

Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids
journal, May 2010

  • Liu, Yao; Gibbs, Markelle; Puthussery, James
  • Nano Letters, Vol. 10, Issue 5
  • DOI: 10.1021/nl101284k

PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere
journal, September 2014

  • Zhang, Jianbing; Gao, Jianbo; Church, Carena P.
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503085v

A Generic Method for Rational Scalable Synthesis of Monodisperse Metal Sulfide Nanocrystals
journal, October 2012

  • Zhang, Haitao; Hyun, Byung-Ryool; Wise, Frank W.
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl303207s

Works referencing / citing this record:

Colloidal quantum dots for optoelectronics
journal, January 2017

  • Litvin, A. P.; Martynenko, I. V.; Purcell-Milton, F.
  • Journal of Materials Chemistry A, Vol. 5, Issue 26
  • DOI: 10.1039/c7ta02076g

Finding and Fixing Traps in II–VI and III–V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation
journal, October 2018

  • Kirkwood, Nicholas; Monchen, Julius O. V.; Crisp, Ryan W.
  • Journal of the American Chemical Society, Vol. 140, Issue 46
  • DOI: 10.1021/jacs.8b07783