DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Development of Pseudocapacitive Properties in Nanosized-MoO2

Abstract

Pseudocapacitive charge storage materials offer the opportunity to bridge the gap between high energy density battery materials and high power density electrical double layer capacitor materials through the rational design of transition metal oxide nanoscale architectures. The research reported in this paper describes the origins and development of pseudocapacitance in MoO2. Micron-size particles of MoO2 exhibit a reversible monoclinic to orthorhombic phase transition upon lithium insertion/deinsertion, however, this phase transformation is suppressed when using 15 nm nanocrystals of MoO2. The nanoscale MoO2 exhibits pseudocapacitive behavior and achieves substantially better energy storage kinetics than the corresponding bulk material. Such size-dependent electrochemical behavior is an essential feature of an extrinsic pseudocapacitor material. The high power capability of nanoscale MoO2 is improved further by synthesizing hybrid materials in which MoO2 nanoparticles are grown on reduced graphene oxide (RGO) scaffolds. Electrode architectures containing MoO2-RGO hybrid materials preserve the pseudocapacitance of MoO2 as lithium capacities of nearly 150 mAh g–1 are obtained at a rate of 50 C.

Authors:
 [1];  [1];  [1];  [1]
  1. Univ. of California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Molecularly Engineered Energy Materials (MEEM)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1370243
Grant/Contract Number:  
SC0001342; 0840531
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 162; Journal Issue: 5; Related Information: MEEM partners with University of California, Los Angeles (lead); University of California, Berkeley; Eastern Washington University; University of Kansas; National Renewable Energy Laboratory; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Kim, H. -S., Cook, J. B., Tolbert, S. H., and Dunn, B. The Development of Pseudocapacitive Properties in Nanosized-MoO2. United States: N. p., 2015. Web. doi:10.1149/2.0141505jes.
Kim, H. -S., Cook, J. B., Tolbert, S. H., & Dunn, B. The Development of Pseudocapacitive Properties in Nanosized-MoO2. United States. https://doi.org/10.1149/2.0141505jes
Kim, H. -S., Cook, J. B., Tolbert, S. H., and Dunn, B. Tue . "The Development of Pseudocapacitive Properties in Nanosized-MoO2". United States. https://doi.org/10.1149/2.0141505jes. https://www.osti.gov/servlets/purl/1370243.
@article{osti_1370243,
title = {The Development of Pseudocapacitive Properties in Nanosized-MoO2},
author = {Kim, H. -S. and Cook, J. B. and Tolbert, S. H. and Dunn, B.},
abstractNote = {Pseudocapacitive charge storage materials offer the opportunity to bridge the gap between high energy density battery materials and high power density electrical double layer capacitor materials through the rational design of transition metal oxide nanoscale architectures. The research reported in this paper describes the origins and development of pseudocapacitance in MoO2. Micron-size particles of MoO2 exhibit a reversible monoclinic to orthorhombic phase transition upon lithium insertion/deinsertion, however, this phase transformation is suppressed when using 15 nm nanocrystals of MoO2. The nanoscale MoO2 exhibits pseudocapacitive behavior and achieves substantially better energy storage kinetics than the corresponding bulk material. Such size-dependent electrochemical behavior is an essential feature of an extrinsic pseudocapacitor material. The high power capability of nanoscale MoO2 is improved further by synthesizing hybrid materials in which MoO2 nanoparticles are grown on reduced graphene oxide (RGO) scaffolds. Electrode architectures containing MoO2-RGO hybrid materials preserve the pseudocapacitance of MoO2 as lithium capacities of nearly 150 mAh g–1 are obtained at a rate of 50 C.},
doi = {10.1149/2.0141505jes},
journal = {Journal of the Electrochemical Society},
number = 5,
volume = 162,
place = {United States},
year = {Tue Feb 03 00:00:00 EST 2015},
month = {Tue Feb 03 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 148 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Kinetics and Mechanism of Molybdenum (VI) Oxide Reduction
journal, August 1995


Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties
journal, July 2009

  • Zhou, Yong; Bao, Qiaoliang; Tang, Lena Ai Ling
  • Chemistry of Materials, Vol. 21, Issue 13
  • DOI: 10.1021/cm9006603

Synthesis and Lithium Storage Mechanism of Ultrafine MoO 2 Nanorods
journal, December 2011

  • Guo, Bingkun; Fang, Xiangpeng; Li, Bin
  • Chemistry of Materials, Vol. 24, Issue 3
  • DOI: 10.1021/cm202459r

Thermoelectrochemically Activated MoO[sub 2] Powder Electrode for Lithium Secondary Batteries
journal, January 2009

  • Ku, Jun H.; Jung, Yoon S.; Lee, Kyu T.
  • Journal of The Electrochemical Society, Vol. 156, Issue 8
  • DOI: 10.1149/1.3141670

Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets
journal, January 2008

  • Kudin, Konstantin N.; Ozbas, Bulent; Schniepp, Hannes C.
  • Nano Letters, Vol. 8, Issue 1
  • DOI: 10.1021/nl071822y

Pseudocapacitive oxide materials for high-rate electrochemical energy storage
journal, January 2014

  • Augustyn, Veronica; Simon, Patrice; Dunn, Bruce
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee44164d

A facile hydrothermal route to iron(III) oxide with conductive additives as composite anode for lithium ion batteries
journal, August 2014


A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries
journal, January 2013

  • Liu, Bing; Zhao, Xinyu; Tian, Yuan
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 22
  • DOI: 10.1039/c3cp44707c

Carbon/MoO 2 Composite Based on Porous Semi-Graphitized Nanorod Assemblies from In Situ Reaction of Tri-Block Polymers
journal, February 2007

  • Ji, Xiulei; Herle, P. Subramanya; Rho, Youngho
  • Chemistry of Materials, Vol. 19, Issue 3
  • DOI: 10.1021/cm060961y

Ordered Mesoporous Metallic MoO 2 Materials with Highly Reversible Lithium Storage Capacity
journal, December 2009

  • Shi, Yifeng; Guo, Bingkun; Corr, Serena A.
  • Nano Letters, Vol. 9, Issue 12
  • DOI: 10.1021/nl902423a

Structure and electrochemistry of LixMoO2
journal, March 1987


Enhancement of Redox Cycling Currents at Interdigitated Electrodes with Elevated Fingers
journal, January 2014

  • Morita, Masao; Hayashi, Katsuyoshi; Horiuchi, Tsutomu
  • Journal of The Electrochemical Society, Vol. 161, Issue 4
  • DOI: 10.1149/2.101403jes

Synthesis and applications of molybdenum (IV) oxide
journal, September 2011

  • Ellefson, Caleb A.; Marin-Flores, Oscar; Ha, Su
  • Journal of Materials Science, Vol. 47, Issue 5
  • DOI: 10.1007/s10853-011-5918-5

Materials for electrochemical capacitors
journal, November 2008

  • Simon, Patrice; Gogotsi, Yury
  • Nature Materials, Vol. 7, Issue 11
  • DOI: 10.1038/nmat2297

Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors
journal, January 1998

  • Liu, T. -C.
  • Journal of The Electrochemical Society, Vol. 145, Issue 6
  • DOI: 10.1149/1.1838571

Nanosize Effect on High-Rate Li-Ion Intercalation in LiCoO 2 Electrode
journal, June 2007

  • Okubo, Masashi; Hosono, Eiji; Kim, Jedeok
  • Journal of the American Chemical Society, Vol. 129, Issue 23
  • DOI: 10.1021/ja0681927

The Effect of Al Substitution on the Chemical and Electrochemical Phase Stability of Orthorhombic LiMnO 2
journal, November 2012

  • Cook, John B.; Kim, Chunjoong; Xu, Linping
  • Journal of The Electrochemical Society, Vol. 160, Issue 1
  • DOI: 10.1149/2.048301jes

High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
journal, April 2013

  • Augustyn, Veronica; Come, Jérémy; Lowe, Michael A.
  • Nature Materials, Vol. 12, Issue 6
  • DOI: 10.1038/nmat3601

Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte
journal, January 2013

  • Han, Pengxian; Ma, Wen; Pang, Shuping
  • Journal of Materials Chemistry A, Vol. 1, Issue 19
  • DOI: 10.1039/c3ta10853h

Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors
journal, January 2010

  • Brezesinski, Torsten; Wang, John; Tolbert, Sarah H.
  • Nature Materials, Vol. 9, Issue 2
  • DOI: 10.1038/nmat2612

Where Do Batteries End and Supercapacitors Begin?
journal, March 2014


Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries
journal, January 2011

  • Sun, Yongming; Hu, Xianluo; Yu, Jimmy C.
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01189h

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Nanomaterials for Rechargeable Lithium Batteries
journal, April 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • Angewandte Chemie International Edition, Vol. 47, Issue 16, p. 2930-2946
  • DOI: 10.1002/anie.200702505

Facile synthesis of reduced graphene oxide in supercritical alcohols and its lithium storage capacity
journal, January 2011

  • Budi Nursanto, Eduardus; Nugroho, Agung; Hong, Seung-Ah
  • Green Chemistry, Vol. 13, Issue 10
  • DOI: 10.1039/c1gc15678k

Langmuir−Blodgett Assembly of Graphite Oxide Single Layers
journal, January 2009

  • Cote, Laura J.; Kim, Franklin; Huang, Jiaxing
  • Journal of the American Chemical Society, Vol. 131, Issue 3
  • DOI: 10.1021/ja806262m

Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles
journal, October 2007

  • Wang, John; Polleux, Julien; Lim, James
  • The Journal of Physical Chemistry C, Vol. 111, Issue 40, p. 14925-14931
  • DOI: 10.1021/jp074464w

The role and utilization of pseudocapacitance for energy storage by supercapacitors
journal, May 1997


Preparation of Graphitic Oxide
journal, March 1958

  • Hummers, William S.; Offeman, Richard E.
  • Journal of the American Chemical Society, Vol. 80, Issue 6, p. 1339-1339
  • DOI: 10.1021/ja01539a017

Visualization of defect densities in reduced graphene oxide
journal, August 2012


Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors
journal, January 1995

  • Zheng, J. P.
  • Journal of The Electrochemical Society, Vol. 142, Issue 8
  • DOI: 10.1149/1.2050077

Crystalline MnO[sub 2] as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors
journal, January 2006

  • Brousse, Thierry; Toupin, Mathieu; Dugas, Romain
  • Journal of The Electrochemical Society, Vol. 153, Issue 12
  • DOI: 10.1149/1.2352197

Ammoxidation of toluene over molybdenum oxides
journal, January 1988

  • Andersson, Arne; Hansen, Staffan
  • Catalysis Letters, Vol. 1, Issue 11
  • DOI: 10.1007/BF00766167

Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage
journal, January 1991

  • Conway, B. E.
  • Journal of The Electrochemical Society, Vol. 138, Issue 6, p. 1539-1548
  • DOI: 10.1149/1.2085829

Lithium Intercalation Cells Without Metallic Lithium
journal, January 1987

  • Auborn, J. J.
  • Journal of The Electrochemical Society, Vol. 134, Issue 3
  • DOI: 10.1149/1.2100521

Nanoscale mapping of ion diffusion in a lithium-ion battery cathode
journal, August 2010


Preparation of Novel Mesoporous Silica Using a Self-Assembled Graphene Oxide Template
journal, April 2020


Transition from 'supercapacitor' to 'battery' behavior in electrochemical energy storage
conference, January 1990


The role and utilization of pseudocapacitance for energy storage by supercapacitors
other, January 1997


Works referencing / citing this record:

Rapid Pseudocapacitive Sodium-Ion Response Induced by 2D Ultrathin Tin Monoxide Nanoarrays
journal, February 2017

  • Chen, Minghua; Chao, Dongliang; Liu, Jilei
  • Advanced Functional Materials, Vol. 27, Issue 12
  • DOI: 10.1002/adfm.201606232

Enhanced Capacity and Rate Capability of Nitrogen/Oxygen Dual-Doped Hard Carbon in Capacitive Potassium-Ion Storage
journal, December 2017


Multidimensional Synergistic Nanoarchitecture Exhibiting Highly Stable and Ultrafast Sodium-Ion Storage
journal, March 2018

  • Tan, Shuangshuang; Jiang, Yalong; Wei, Qiulong
  • Advanced Materials, Vol. 30, Issue 18
  • DOI: 10.1002/adma.201707122

Large Intercalation Pseudocapacitance in 2D VO 2 (B): Breaking through the Kinetic Barrier
journal, August 2018


Flexible WS 2 @CNFs Membrane Electrode with Outstanding Lithium Storage Performance Derived from Capacitive Behavior
journal, December 2017

  • Wu, Chen; Zeng, Xiaohui; He, Pingge
  • Advanced Materials Interfaces, Vol. 5, Issue 3
  • DOI: 10.1002/admi.201701080

Mesoporous MoS 2 as a Transition Metal Dichalcogenide Exhibiting Pseudocapacitive Li and Na-Ion Charge Storage
journal, February 2016

  • Cook, John B.; Kim, Hyung-Seok; Yan, Yan
  • Advanced Energy Materials, Vol. 6, Issue 9
  • DOI: 10.1002/aenm.201501937

Pseudocapacitive Charge Storage in Thick Composite MoS 2 Nanocrystal-Based Electrodes
journal, October 2016

  • Cook, John B.; Kim, Hyung-Seok; Lin, Terri C.
  • Advanced Energy Materials, Vol. 7, Issue 2
  • DOI: 10.1002/aenm.201601283

Ultrafine MoO 2 -Carbon Microstructures Enable Ultralong-Life Power-Type Sodium Ion Storage by Enhanced Pseudocapacitance
journal, April 2017

  • Zhao, Changtai; Yu, Chang; Zhang, Mengdi
  • Advanced Energy Materials, Vol. 7, Issue 15
  • DOI: 10.1002/aenm.201602880

Emergent Pseudocapacitance of 2D Nanomaterials
journal, February 2018


Electrochemical and Structural Investigation of Calcium Substituted Monoclinic Li 3 V 2 (PO 4 ) 3 Anode Materials for Li‐Ion Batteries
journal, July 2019

  • Fu, Qiang; Liu, Shuoqi; Sarapulova, Angelina
  • Advanced Energy Materials, Vol. 9, Issue 33
  • DOI: 10.1002/aenm.201901864

Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage
journal, June 2018

  • Fleischmann, Simon; Tolosa, Aura; Presser, Volker
  • Chemistry - A European Journal, Vol. 24, Issue 47
  • DOI: 10.1002/chem.201800772

Phosphorus Particles Embedded in Reduced Graphene Oxide Matrix to Enhance Capacity and Rate Capability for Capacitive Potassium-Ion Storage
journal, August 2018

  • Wang, Hong; Wang, Lifeng; Wang, Liancheng
  • Chemistry - A European Journal, Vol. 24, Issue 52
  • DOI: 10.1002/chem.201802753

MoS 2 /MoO x -Nanostructure-Decorated Activated Carbon Cloth for Enhanced Supercapacitor Performance
journal, February 2018


In Operando Calorimetric Measurements for Activated Carbon Electrodes in Ionic Liquid Electrolytes under Large Potential Windows
journal, January 2020

  • Munteshari, Obaidallah; Borenstein, Arie; DeBlock, Ryan H.
  • ChemSusChem, Vol. 13, Issue 5
  • DOI: 10.1002/cssc.201903011

Enhanced pseudocapacitive energy storage properties of Nb 2 O 5 /C core‐shell structures with the surface modification
journal, May 2019

  • Kim, Jong Woung; Kim, Sang‐Ok; Kim, Hyung‐Seok
  • International Journal of Energy Research, Vol. 43, Issue 9
  • DOI: 10.1002/er.4561

A 1D Honeycomb‐Like Amorphous Zincic Vanadate for Stable and Fast Sodium‐Ion Storage
journal, January 2020


Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
journal, June 2016

  • Chao, Dongliang; Zhu, Changrong; Yang, Peihua
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12122

Efficient storage mechanisms for building better supercapacitors
journal, May 2016


Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x
journal, December 2016

  • Kim, Hyung-Seok; Cook, John B.; Lin, Hao
  • Nature Materials, Vol. 16, Issue 4
  • DOI: 10.1038/nmat4810

Achieving high energy density and high power density with pseudocapacitive materials
journal, October 2019

  • Choi, Christopher; Ashby, David S.; Butts, Danielle M.
  • Nature Reviews Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41578-019-0142-z

Li 4 Ti 5 O 12 –TiO 2 /MoO 2 nanoclusters-embedded into carbon nanosheets core/shell porous superstructures boost lithium ion storage
journal, January 2017

  • Yang, Yong; Wang, Shitong; Luo, Mingchuan
  • Journal of Materials Chemistry A, Vol. 5, Issue 24
  • DOI: 10.1039/c7ta02565c

Fresh MoO 2 as a better electrode for pseudocapacitive sodium-ion storage
journal, January 2018

  • Zhao, Xu; Zhao, Yundong; Yang, Ying
  • New Journal of Chemistry, Vol. 42, Issue 18
  • DOI: 10.1039/c8nj03570a

Pseudocapacitive layered birnessite sodium manganese dioxide for high-rate non-aqueous sodium ion capacitors
journal, January 2018

  • Jiang, Yalong; Tan, Shuangshuang; Wei, Qiulong
  • Journal of Materials Chemistry A, Vol. 6, Issue 26
  • DOI: 10.1039/c8ta02516a

Self-stacked multilayer FeOCl supported on a cellulose-derived carbon aerogel: a new and high-performance anode material for supercapacitors
journal, January 2019

  • Wan, Caichao; Jiao, Yue; Bao, Wenhui
  • Journal of Materials Chemistry A, Vol. 7, Issue 16
  • DOI: 10.1039/c8ta12261j

Targeted synthesis of ionic liquid-polyoxometalate derived Mo-based electrodes for advanced electrochemical performance
journal, January 2019

  • Chen, Guojian; Zhang, Lei; Zhang, Yadong
  • Journal of Materials Chemistry A, Vol. 7, Issue 12
  • DOI: 10.1039/c8ta12562g

NiS 2 nanoparticles anchored on open carbon nanohelmets as an advanced anode for lithium-ion batteries
journal, January 2020

  • Yang, D. D.; Zhao, M.; Zhang, R. D.
  • Nanoscale Advances, Vol. 2, Issue 1
  • DOI: 10.1039/c9na00661c

Molybdenum oxide nano-dumplings with excellent stability for photothermal cancer therapy and as a controlled release hydrogel
journal, January 2019

  • Yang, Haiyao; Guo, Yanxian; Zhuang, Zhengfei
  • New Journal of Chemistry, Vol. 43, Issue 36
  • DOI: 10.1039/c9nj03088c

Electrochemically modified graphite paper as an advanced electrode substrate for supercapacitor application
journal, January 2019

  • Mandal, Debasish; Routh, Parimal; Mahato, Ashok K.
  • Journal of Materials Chemistry A, Vol. 7, Issue 29
  • DOI: 10.1039/c9ta04496e

Carbon Coated SnO 2 as a Negative Electrode Additive for High Performance Lead Acid Batteries and Supercapacitors
journal, January 2019

  • Naresh, Vangapally; Martha, Surendra K.
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.0291904jes

MnO 2 -Carbon Nanotube Electrodes for Supercapacitors with High Active Mass Loadings
journal, January 2017

  • Chen, Ri; Poon, Ryan; Sahu, Rakesh P.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1491707jes

Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage
collection, January 2018

  • Fleischmann, Simon; Tolosa, Aura; Presser, Volker
  • Universität des Saarlandes
  • DOI: 10.22028/d291-29131