DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Monitoring Volumetric Changes in Silicon Thin-Film Anodes through In Situ Optical Diffraction Microscopy

Abstract

A high-resolution in situ spectroelectrochemical optical diffraction experiment has been created to understand the volume expansion/contraction process of amorphous silicon (a-Si) thin-film anodes. Electrodes consisting of 1D transmissive gratings of silicon have been produced through photolithographic methods. After glovebox assembly in a home-built Teflon cell, monitoring of the diffraction efficiency of these gratings during the lithiation/delithiation process is performed using an optical microscope equipped with a Bertrand lens. When the diffraction efficiency along with optical constants obtained from in situ spectroscopic ellipsometry is utilized, volume changes of the active materials can be deduced. Unlike transmission electron microscopy and atomic force microscopy characterization methods of observing silicon’s volume expansion, this experiment allows for real-time monitoring of the volume change at charge/discharge cycles greater than just the first few along with an experimental environment that directly mimics that of a real battery. This technique reflects promising results that provide needed insight into understanding the lithium alloying reaction and subsequent induced capacity fade during the cycling of alloying anodes in lithium-ion batteries.

Authors:
 [1];  [1];  [1];  [2]
  1. Univ. of Texas, Austin, TX (United States)
  2. Univ. of Texas, Austin, TX (United States); Skolkovo Inst. of Science and Technology, Moscow (Russia)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Understanding Charge Separation and Transfer at Interfaces in Energy Materials (CST)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1370052
Grant/Contract Number:  
SC0001091
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 27; Related Information: CST partners with University of Texas at Austin (lead); Sandia National Laboratories; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; silicon anode; lithium-ion batteries; optical diffraction; refractive index; volume expansion; spectroscopic ellipsometry; amorphous silicon; transmissive grating

Citation Formats

Duay, Jonathon, Schroder, Kjell W., Murugesan, Sankaran, and Stevenson, Keith J. Monitoring Volumetric Changes in Silicon Thin-Film Anodes through In Situ Optical Diffraction Microscopy. United States: N. p., 2016. Web. doi:10.1021/acsami.6b03822.
Duay, Jonathon, Schroder, Kjell W., Murugesan, Sankaran, & Stevenson, Keith J. Monitoring Volumetric Changes in Silicon Thin-Film Anodes through In Situ Optical Diffraction Microscopy. United States. https://doi.org/10.1021/acsami.6b03822
Duay, Jonathon, Schroder, Kjell W., Murugesan, Sankaran, and Stevenson, Keith J. Thu . "Monitoring Volumetric Changes in Silicon Thin-Film Anodes through In Situ Optical Diffraction Microscopy". United States. https://doi.org/10.1021/acsami.6b03822. https://www.osti.gov/servlets/purl/1370052.
@article{osti_1370052,
title = {Monitoring Volumetric Changes in Silicon Thin-Film Anodes through In Situ Optical Diffraction Microscopy},
author = {Duay, Jonathon and Schroder, Kjell W. and Murugesan, Sankaran and Stevenson, Keith J.},
abstractNote = {A high-resolution in situ spectroelectrochemical optical diffraction experiment has been created to understand the volume expansion/contraction process of amorphous silicon (a-Si) thin-film anodes. Electrodes consisting of 1D transmissive gratings of silicon have been produced through photolithographic methods. After glovebox assembly in a home-built Teflon cell, monitoring of the diffraction efficiency of these gratings during the lithiation/delithiation process is performed using an optical microscope equipped with a Bertrand lens. When the diffraction efficiency along with optical constants obtained from in situ spectroscopic ellipsometry is utilized, volume changes of the active materials can be deduced. Unlike transmission electron microscopy and atomic force microscopy characterization methods of observing silicon’s volume expansion, this experiment allows for real-time monitoring of the volume change at charge/discharge cycles greater than just the first few along with an experimental environment that directly mimics that of a real battery. This technique reflects promising results that provide needed insight into understanding the lithium alloying reaction and subsequent induced capacity fade during the cycling of alloying anodes in lithium-ion batteries.},
doi = {10.1021/acsami.6b03822},
journal = {ACS Applied Materials and Interfaces},
number = 27,
volume = 8,
place = {United States},
year = {Thu Jun 16 00:00:00 EDT 2016},
month = {Thu Jun 16 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Isotropic Volume Expansion of Particles of Amorphous Metallic Alloys in Composite Negative Electrodes for Li-Ion Batteries
journal, January 2007

  • Timmons, A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 5
  • DOI: 10.1149/1.2711075

The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature
journal, November 2000


Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage
journal, February 2003


Alloy Formation in Nanostructured Silicon
journal, June 2001


Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries
journal, May 2010

  • Song, Taeseup; Xia, Jianliang; Lee, Jin-Hyon
  • Nano Letters, Vol. 10, Issue 5, p. 1710-1716
  • DOI: 10.1021/nl100086e

Stabilization of Silicon Anode for Li-Ion Batteries
journal, January 2010

  • Xiao, Jie; Xu, Wu; Wang, Deyu
  • Journal of The Electrochemical Society, Vol. 157, Issue 10, p. A1047-A1051
  • DOI: 10.1149/1.3464767

Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers
journal, November 2003


Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium Ion Batteries
journal, October 2015

  • Chen, Yu; Liu, Lifeng; Xiong, Jie
  • Advanced Functional Materials, Vol. 25, Issue 43
  • DOI: 10.1002/adfm.201503206

Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes
journal, January 2009

  • Cui, Li-Feng; Ruffo, Riccardo; Chan, Candace K.
  • Nano Letters, Vol. 9, Issue 1, p. 491-495
  • DOI: 10.1021/nl8036323

Interfacial Properties of the a-Si∕Cu:Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries
journal, January 2006

  • Maranchi, J. P.; Hepp, A. F.; Evans, A. G.
  • Journal of The Electrochemical Society, Vol. 153, Issue 6
  • DOI: 10.1149/1.2184753

High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries
journal, January 2003

  • Maranchi, J. P.; Hepp, A. F.; Kumta, P. N.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 9
  • DOI: 10.1149/1.1596918

Micrometer-Scale Amorphous Si Thin-Film Electrodes Fabricated by Electron-Beam Deposition for Li-Ion Batteries
journal, January 2006

  • Yin, Jingtian; Wada, Masashi; Yamamoto, Koichi
  • Journal of The Electrochemical Society, Vol. 153, Issue 3
  • DOI: 10.1149/1.2160429

In Situ Electrochemical Lithiation/Delithiation Observation of Individual Amorphous Si Nanorods
journal, September 2011

  • Ghassemi, Hessam; Au, Ming; Chen, Ning
  • ACS Nano, Vol. 5, Issue 10
  • DOI: 10.1021/nn2029814

Colossal Reversible Volume Changes in Lithium Alloys
journal, January 2001

  • Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 9
  • DOI: 10.1149/1.1388178

Electrochemical behaviors of silicon based anode material
journal, February 2006


Amorphous silicon as a possible anode material for Li-ion batteries
journal, September 1999


Diffusion of Lithium in Bulk Amorphous Silicon: A Theoretical Study
journal, October 2012

  • Tritsaris, Georgios A.; Zhao, Kejie; Okeke, Onyekwelu U.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 42
  • DOI: 10.1021/jp307221q

Lithium Transport through Nanosized Amorphous Silicon Layers
journal, February 2013

  • Hüger, Erwin; Dörrer, Lars; Rahn, Johanna
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl304736t

Two-Phase Electrochemical Lithiation in Amorphous Silicon
journal, January 2013

  • Wang, Jiang Wei; He, Yu; Fan, Feifei
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl304379k

Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries
journal, March 2012

  • Murugesan, Sankaran; Harris, Justin T.; Korgel, Brian A.
  • Chemistry of Materials, Vol. 24, Issue 7
  • DOI: 10.1021/cm2037475

In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
journal, January 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Harris, Justin T.
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl3044508

Reaction of Li with Alloy Thin Films Studied by In Situ AFM
journal, January 2003

  • Beaulieu, L. Y.; Hatchard, T. D.; Bonakdarpour, A.
  • Journal of The Electrochemical Society, Vol. 150, Issue 11
  • DOI: 10.1149/1.1613668

In Situ Transmission X-ray Microscopy Study on Working SnO Anode Particle of Li-Ion Batteries
journal, January 2011

  • Chao, Sung-Chieh; Yen, Yu-Chan; Song, Yen-Fang
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.043112jes

Photolithographically-Patterned Electroactive Films and Electrochemically Modulated Diffraction Gratings
journal, January 2000

  • Schanze, Kirk S.; Bergstedt, Troy S.; Hauser, Brain T.
  • Langmuir, Vol. 16, Issue 2
  • DOI: 10.1021/la990836j

Optical Grating Diffraction Method: From Strain Microscope to Strain Gauge
journal, January 1999


Strain measurement by a diffraction grating method
journal, April 1998


Application of interferometric strain rosette to residual stress measurements
journal, May 1997


Multipoint diffraction strain sensor: an add-on to moire interferometer
conference, August 2006

  • Iqbal, Salman; Mhaisalkar, Subodh; Asundi, Anand
  • SPIE Optics + Photonics, SPIE Proceedings
  • DOI: 10.1117/12.679893

Optical Fiber Strain Sensing in Engineering Mechanics
book, January 2000


Characterization of Electrodeposited Gold and Palladium Nanowire Gratings with Optical Diffraction Measurements
journal, July 2009

  • Halpern, Aaron R.; Nishi, Naoya; Wen, Jia
  • Analytical Chemistry, Vol. 81, Issue 14
  • DOI: 10.1021/ac900938t

Evaluation of Lithium Ion Insertion Reactivity via Electrochromic Diffraction-Based Imaging
journal, January 2009

  • Kondrachova, Lilia V.; May, R. Alan; Cone, Craig W.
  • Langmuir, Vol. 25, Issue 4
  • DOI: 10.1021/la803245a

Aqueous Electrogenerated Chemiluminescence of Self-Assembled Double-Walled Tubular J-Aggregates of Amphiphilic Cyanine Dyes
journal, December 2010

  • Walker, E. Kate; Vanden Bout, David A.; Stevenson, Keith J.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 5
  • DOI: 10.1021/jp1108015

Fabrication of Optically Transparent Carbon Electrodes by the Pyrolysis of Photoresist Films:  Approach to Single-Molecule Spectroelectrochemistry
journal, April 2006

  • Donner, Sebastian; Li, Hung-Wing; Yeung, Edward S.
  • Analytical Chemistry, Vol. 78, Issue 8
  • DOI: 10.1021/ac052244d

Ultraviolet—Visible Spectroelectrochemistry of Chemisorbed Molecular Layers on Optically Transparent Carbon Electrodes
journal, November 2007


Electroanalytical Performance of Carbon Films with Near-Atomic Flatness
journal, March 2001

  • Ranganathan, Srikanth; McCreery, Richard L.
  • Analytical Chemistry, Vol. 73, Issue 5
  • DOI: 10.1021/ac0007534

Carbon Optically Transparent Electrodes for Electrogenerated Chemiluminescence
journal, December 2011

  • Walker, E. Kate; Vanden Bout, David A.; Stevenson, Keith J.
  • Langmuir, Vol. 28, Issue 2
  • DOI: 10.1021/la2042394

Optical determination of the mass density of amorphous and microcrystalline silicon layers with different hydrogen contents
journal, May 1998


Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film
journal, April 2001


Ordered arrays of large latex particles organised by vertical deposition
journal, December 2002


Laser‐induced excited state and ultrasonic wave gratings: Amplitude and phase grating contributions to diffraction
journal, August 1982

  • Nelson, Keith A.; Casalegno, Roger; Miller, R. J. Dwayne
  • The Journal of Chemical Physics, Vol. 77, Issue 3
  • DOI: 10.1063/1.443979

Dispersion model for optical constants of a-Si:H
journal, December 2013


In Situ Investigations of SEI Layer Growth on Electrode Materials for Lithium-Ion Batteries Using Spectroscopic Ellipsometry
journal, January 2012

  • McArthur, M. A.; Trussler, S.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.004203jes

Optical Constants of Electrodeposited Mixed Molybdenum−Tungsten Oxide Films Determined by Variable-Angle Spectroscopic Ellipsometry
journal, December 2007

  • May, R. Alan; Kondrachova, Lilia; Hahn, Benjamin P.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 49
  • DOI: 10.1021/jp075835b

Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions
journal, September 2012

  • Schroder, Kjell W.; Celio, Hugo; Webb, Lauren J.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp307372m

Works referencing / citing this record:

In situ and Operando Tracking of Microstructure and Volume Evolution of Silicon Electrodes by using Synchrotron X‐ray Imaging
journal, October 2018