skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanometer-scale hydrogen ‘portals’ for the control of magnesium hydride formation


Our unique ‘nanoportal’ structure of Pd nanoparticles deposited on epitaxial Mg thin films allows the study of MgH2 formation kinetics in a controlled way.

 [1];  [1];  [1]
  1. Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC), Washington, D.C. (United States). Center on Nanostructuring for Efficient Energy Conversion (CNEEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
Grant/Contract Number:  
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 17; Journal Issue: 43; Related Information: CNEEC partners with Stanford University (lead); Carnegie Institution at Stanford; Technical University of Denmark; Journal ID: ISSN 1463-9076
Royal Society of Chemistry
Country of Publication:
United States

Citation Formats

Chung, Chia -Jung, Nivargi, Chinmay, and Clemens, Bruce. Nanometer-scale hydrogen ‘portals’ for the control of magnesium hydride formation. United States: N. p., 2015. Web. doi:10.1039/c5cp04515k.
Chung, Chia -Jung, Nivargi, Chinmay, & Clemens, Bruce. Nanometer-scale hydrogen ‘portals’ for the control of magnesium hydride formation. United States. doi:
Chung, Chia -Jung, Nivargi, Chinmay, and Clemens, Bruce. Tue . "Nanometer-scale hydrogen ‘portals’ for the control of magnesium hydride formation". United States. doi:
title = {Nanometer-scale hydrogen ‘portals’ for the control of magnesium hydride formation},
author = {Chung, Chia -Jung and Nivargi, Chinmay and Clemens, Bruce},
abstractNote = {Our unique ‘nanoportal’ structure of Pd nanoparticles deposited on epitaxial Mg thin films allows the study of MgH2 formation kinetics in a controlled way.},
doi = {10.1039/c5cp04515k},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 43,
volume = 17,
place = {United States},
year = {2015},
month = {9}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: A schematic diagram of the novel Pd nanoparticle nano-portal structure and the predicted hydrogenation mechanism. The upper part of the figure is the structure in cross-section and the lower part is the structure visualized in three dimensions. (a) The structure of the as-grown sample. (b) The nucleation ofmore » MgH2. (c) The growth process of the nucleated MgH2.« less

Save / Share:

Works referenced in this record:

Kinetics of Formation of Magnesium Hydride from Magnesium and Hydrogen
journal, April 1977

Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity
journal, January 2012

  • Tan, XueHai; Wang, Liya; Holt, Chris M. B.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 31
  • DOI: 10.1039/c2cp42136d

Hydrogen diffusion in Mg–H and Mg–Ni–H alloys
journal, July 2008

Hydrogenography: An Optical Combinatorial Method To Find New Light-Weight Hydrogen-Storage Materials
journal, October 2007

  • Gremaud, R.; Broedersz, C. P.; Borsa, D. M.
  • Advanced Materials, Vol. 19, Issue 19
  • DOI: 10.1002/adma.200602560

Hydrogen-storage materials for mobile applications
journal, November 2001

  • Schlapbach, Louis; Züttel, Andreas
  • Nature, Vol. 414, Issue 6861
  • DOI: 10.1038/35104634

Thermodynamic Destabilization of Magnesium Hydride Using Mg-Based Solid Solution Alloys
journal, May 2014

  • Zhou, Chengshang; Fang, Zhigang Zak; Lu, Jun
  • The Journal of Physical Chemistry C, Vol. 118, Issue 22
  • DOI: 10.1021/jp501306w

Hydrogen sorption mechanism of oxidized nickel clusters
journal, November 2004

  • Borgschulte, A.; Westerwaal, R. J.; Rector, J. H.
  • Applied Physics Letters, Vol. 85, Issue 21
  • DOI: 10.1063/1.1828592

Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation:  LiH and MgH 2 Destabilized with Si
journal, September 2004

  • Vajo, John J.; Mertens, Florian; Ahn, Channing C.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 37
  • DOI: 10.1021/jp040060h

Effect of alloying magnesium with chromium and vanadium on hydrogenation kinetics studied with neutron reflectometry
journal, January 2011

  • Kalisvaart, Peter; Luber, Erik; Fritzsche, Helmut
  • Chemical Communications, Vol. 47, Issue 14
  • DOI: 10.1039/c0cc05501h

Hydrogen in magnesium: new perspectives toward functional stores
journal, January 2010

  • Aguey-Zinsou, Kondo-François; Ares-Fernández, José-Ramón
  • Energy & Environmental Science, Vol. 3, Issue 5
  • DOI: 10.1039/b921645f

Nanocrystalline magnesium for hydrogen storage
journal, June 1999

Nanocrystalline aluminium hydrides for hydrogen storage
journal, April 2004

  • Fichtner, Maximilian; Engel, Jens; Fuhr, Olaf
  • Materials Science and Engineering: B, Vol. 108, Issue 1-2
  • DOI: 10.1016/j.mseb.2003.10.036

Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials
journal, February 2001

Interfacial Alloy Hydride Destabilization in Mg / Pd Thin Films
journal, March 2012

Kinetics of Phase Change. I General Theory
journal, December 1939

  • Avrami, Melvin
  • The Journal of Chemical Physics, Vol. 7, Issue 12, p. 1103-1112
  • DOI: 10.1063/1.1750380

Formation and decomposition of magnesium hydride
journal, January 1983

NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Moving interface hydride formation in multilayered metal thin films
journal, July 2010

  • Kelly, Stephen T.; Clemens, B. M.
  • Journal of Applied Physics, Vol. 108, Issue 1
  • DOI: 10.1063/1.3447868

A review of catalyst-enhanced magnesium hydride as a hydrogen storage material
journal, September 2015

Thermodynamically destabilized hydride formation in “bulk” Mg–AlTi multilayers for hydrogen storage
journal, January 2013

  • Kalisvaart, Peter; Shalchi-Amirkhiz, Babak; Zahiri, Ramin
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 39
  • DOI: 10.1039/c3cp52706a

Formation and dissociation of MgH2 in epitaxial Mg thin films
journal, June 2007

  • Kelekar, R.; Giffard, H.; Kelly, S. T.
  • Journal of Applied Physics, Vol. 101, Issue 11
  • DOI: 10.1063/1.2736304

Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg
journal, June 2001

Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation
journal, November 2009

  • Gracia-Pinilla, M.; Martínez, E.; Vidaurri, G. Silva
  • Nanoscale Research Letters, Vol. 5, Issue 1
  • DOI: 10.1007/s11671-009-9462-z

Amelioration des conditions de synthese de l'hydrure de magnesium a l'aide d'adjuvants
journal, November 1976

    Works referencing / citing this record:

    Nickel-decorated graphene nanoplates for enhanced H 2 sorption properties of magnesium hydride at moderate temperatures
    journal, January 2016

    • Zhang, Jiguang; Zhu, Yunfeng; Zang, Xiaoxian
    • Journal of Materials Chemistry A, Vol. 4, Issue 7
    • DOI: 10.1039/c5ta09848c

    Enhanced H 2 sorption performance of magnesium hydride with hard-carbon-sphere-wrapped nickel
    journal, January 2018

    • Peng, Dandan; Ding, Zhenmin; Fu, Yaokun
    • RSC Advances, Vol. 8, Issue 50
    • DOI: 10.1039/c8ra05464a

    Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing
    journal, November 2016

    • Johnson, Grant E.; Moser, Trevor; Engelhard, Mark
    • The Journal of Chemical Physics, Vol. 145, Issue 17
    • DOI: 10.1063/1.4966199

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.