skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Super-Joule heating in graphene and silver nanowire network

Abstract

Transistors, sensors, and transparent conductors based on randomly assembled nanowire networks lean on multi-component percolation for unique and distinctive applications in flexible electronics, biochemical sensing, and solar cells. Although conduction models for 1-D and 1-D/2-D networks have been developed, typically assuming linear electronic transport and self-heating, the model has not been validated by direct high-resolution characterization of coupled electronic pathways and thermal response. In this letter, we show the occurrence of nonlinear “super-Joule” self-heating at the transport bottlenecks in networks of silver nanowires and silver nanowire/single layer graphene hybrid using high resolution thermoreflectance (TR) imaging. TR images at the microscopic self-heating hotspots within nanowire network and nanowire/graphene hybrid network devices with submicron spatial resolution are used to infer electrical current pathways. The findings encourage a fundamental reevaluation of transport models for network-based percolating conductors.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Purdue Univ., West Lafayette, IN (United States)
Publication Date:
Research Org.:
Univ. of California, Santa Barbara, CA (United States). Energy Frontier Research Center (EFRC) Center for Energy Efficient Materials (CEEM); Columbia Univ., New York, NY (United States). Energy Frontier Research Center (EFRC) Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
OSTI Identifier:
1369777
Alternate Identifier(s):
OSTI ID: 1226734
Grant/Contract Number:  
SC0001009; SC0001085
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 106; Journal Issue: 14; Related Information: CEEM partners with the University of California, Santa Barbara (lead); Purdue University; Los Alamos National Laboratory; National Renewable Energy Laboratory; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English

Citation Formats

Maize, Kerry, Das, Suprem R., Sadeque, Sajia, Mohammed, Amr M. S., Shakouri, Ali, Janes, David B., and Alam, Muhammad A. Super-Joule heating in graphene and silver nanowire network. United States: N. p., 2015. Web. doi:10.1063/1.4916943.
Maize, Kerry, Das, Suprem R., Sadeque, Sajia, Mohammed, Amr M. S., Shakouri, Ali, Janes, David B., & Alam, Muhammad A. Super-Joule heating in graphene and silver nanowire network. United States. doi:10.1063/1.4916943.
Maize, Kerry, Das, Suprem R., Sadeque, Sajia, Mohammed, Amr M. S., Shakouri, Ali, Janes, David B., and Alam, Muhammad A. Tue . "Super-Joule heating in graphene and silver nanowire network". United States. doi:10.1063/1.4916943. https://www.osti.gov/servlets/purl/1369777.
@article{osti_1369777,
title = {Super-Joule heating in graphene and silver nanowire network},
author = {Maize, Kerry and Das, Suprem R. and Sadeque, Sajia and Mohammed, Amr M. S. and Shakouri, Ali and Janes, David B. and Alam, Muhammad A.},
abstractNote = {Transistors, sensors, and transparent conductors based on randomly assembled nanowire networks lean on multi-component percolation for unique and distinctive applications in flexible electronics, biochemical sensing, and solar cells. Although conduction models for 1-D and 1-D/2-D networks have been developed, typically assuming linear electronic transport and self-heating, the model has not been validated by direct high-resolution characterization of coupled electronic pathways and thermal response. In this letter, we show the occurrence of nonlinear “super-Joule” self-heating at the transport bottlenecks in networks of silver nanowires and silver nanowire/single layer graphene hybrid using high resolution thermoreflectance (TR) imaging. TR images at the microscopic self-heating hotspots within nanowire network and nanowire/graphene hybrid network devices with submicron spatial resolution are used to infer electrical current pathways. The findings encourage a fundamental reevaluation of transport models for network-based percolating conductors.},
doi = {10.1063/1.4916943},
journal = {Applied Physics Letters},
number = 14,
volume = 106,
place = {United States},
year = {2015},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

CCD-based thermoreflectance microscopy: principles and applications
journal, June 2009


Interfacial thermal transport between nanotubes
journal, October 2009

  • Kumar, S.; Murthy, J. Y.
  • Journal of Applied Physics, Vol. 106, Issue 8
  • DOI: 10.1063/1.3245388

Co-Percolating Graphene-Wrapped Silver Nanowire Network for High Performance, Highly Stable, Transparent Conducting Electrodes
journal, April 2013

  • Chen, Ruiyi; Das, Suprem R.; Jeong, Changwook
  • Advanced Functional Materials, Vol. 23, Issue 41
  • DOI: 10.1002/adfm.201300124

Carbon Nanonets Spark New Electronics
journal, May 2007


Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths
journal, April 2001

  • Tessier, G.; Holé, S.; Fournier, D.
  • Applied Physics Letters, Vol. 78, Issue 16
  • DOI: 10.1063/1.1363696

Nanoscale Temperature Distributions Measured by Scanning Joule Expansion Microscopy
journal, May 1998

  • Majumdar, A.; Varesi, J.
  • Journal of Heat Transfer, Vol. 120, Issue 2
  • DOI: 10.1115/1.2824245

Thermoreflectance temperature imaging of integrated circuits: calibration technique and quantitative comparison with integrated sensors and simulations
journal, September 2006


2D Graphene Oxide Nanosheets as an Adhesive Over-Coating Layer for Flexible Transparent Conductive Electrodes
journal, January 2013

  • Moon, In Kyu; Kim, Jae Il; Lee, Hanleem
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01112

The effects of percolation in nanostructured transparent conductors
journal, October 2011


Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates
journal, July 2008

  • Cao, Qing; Kim, Hoon-sik; Pimparkar, Ninad
  • Nature, Vol. 454, Issue 7203, p. 495-500
  • DOI: 10.1038/nature07110

Imaging dissipation and hot spots in carbon nanotube network transistors
journal, February 2011

  • Estrada, David; Pop, Eric
  • Applied Physics Letters, Vol. 98, Issue 7
  • DOI: 10.1063/1.3549297

Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method
journal, December 2005

  • Burzo, M. G.; Komarov, P. L.; Raad, P. E.
  • IEEE Transactions on Components and Packaging Technologies, Vol. 28, Issue 4
  • DOI: 10.1109/TCAPT.2005.859738

High resolution photothermal imaging of high frequency phenomena using a visible charge coupled device camera associated with a multichannel lock-in scheme
journal, September 1999

  • Grauby, S.; Forget, B. C.; Holé, S.
  • Review of Scientific Instruments, Vol. 70, Issue 9
  • DOI: 10.1063/1.1149966

Short time transient thermal behavior of solid-state microrefrigerators
journal, December 2009

  • Ezzahri, Y.; Christofferson, J.; Zeng, G.
  • Journal of Applied Physics, Vol. 106, Issue 11
  • DOI: 10.1063/1.3266173

Thermoreflectance imaging of percolation effects and dynamic resistance in indium tin oxide nanoparticle layers
journal, October 2012

  • Chavez, R.; Angst, S.; Maize, K.
  • Journal of Applied Physics, Vol. 112, Issue 8
  • DOI: 10.1063/1.4757960

Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes
journal, July 2013

  • Hoon Seo, Tae; Kyoung Kim, Bo; Shin, GangU
  • Applied Physics Letters, Vol. 103, Issue 5
  • DOI: 10.1063/1.4817256

Density Inhomogeneity Driven Percolation Metal-Insulator Transition and Dimensional Crossover in Graphene Nanoribbons
journal, July 2008


Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires
journal, October 2012

  • Kholmanov, Iskandar N.; Magnuson, Carl W.; Aliev, Ali E.
  • Nano Letters, Vol. 12, Issue 11, p. 5679-5683
  • DOI: 10.1021/nl302870x

Heat Dissipation Mechanism at Carbon Nanotube Junctions on Silicon Oxide Substrate
journal, March 2014

  • Chen, Liang; Kumar, Satish
  • Journal of Heat Transfer, Vol. 136, Issue 5
  • DOI: 10.1115/1.4025436

Nanoscale Joule heating, Peltier cooling and current crowding at graphene–metal contacts
journal, April 2011

  • Grosse, Kyle L.; Bae, Myung-Ho; Lian, Feifei
  • Nature Nanotechnology, Vol. 6, Issue 5, p. 287-290
  • DOI: 10.1038/nnano.2011.39

Percolating Conduction in Finite Nanotube Networks
journal, August 2005


High-Performance, Transparent, and Stretchable Electrodes Using Graphene–Metal Nanowire Hybrid Structures
journal, May 2013

  • Lee, Mi-Sun; Lee, Kyongsoo; Kim, So-Yun
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl401070p

Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors
journal, April 2003

  • Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 9, p. 4984-4989
  • DOI: 10.1073/pnas.0837064100

Percolation in Transparent and Conducting Carbon Nanotube Networks
journal, December 2004

  • Hu, L.; Hecht, D. S.; Grüner, G.
  • Nano Letters, Vol. 4, Issue 12, p. 2513-2517
  • DOI: 10.1021/nl048435y

Percolation and Conduction
journal, October 1973


Short-timescale thermal mapping of semiconductor devices
journal, May 1997

  • Ju, S.; Kading, O. W.; Leung, Y. K.
  • IEEE Electron Device Letters, Vol. 18, Issue 5
  • DOI: 10.1109/55.568750

Thermoreflectance imaging of sub 100 ns pulsed cooling in high-speed thermoelectric microcoolers
journal, March 2013

  • Vermeersch, Bjorn; Bahk, Je-Hyeong; Christofferson, James
  • Journal of Applied Physics, Vol. 113, Issue 10
  • DOI: 10.1063/1.4794166