skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First-principles Green-Kubo method for thermal conductivity calculations

Authors:
;
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1369581
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Name: Physical Review B Journal Volume: 96 Journal Issue: 2; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Kang, Jun, and Wang, Lin-Wang. First-principles Green-Kubo method for thermal conductivity calculations. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.96.020302.
Kang, Jun, & Wang, Lin-Wang. First-principles Green-Kubo method for thermal conductivity calculations. United States. doi:10.1103/PhysRevB.96.020302.
Kang, Jun, and Wang, Lin-Wang. Thu . "First-principles Green-Kubo method for thermal conductivity calculations". United States. doi:10.1103/PhysRevB.96.020302.
@article{osti_1369581,
title = {First-principles Green-Kubo method for thermal conductivity calculations},
author = {Kang, Jun and Wang, Lin-Wang},
abstractNote = {},
doi = {10.1103/PhysRevB.96.020302},
journal = {Physical Review B},
number = 2,
volume = 96,
place = {United States},
year = {2017},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevB.96.020302

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Thermal Conductivity of Amorphous Silicon
journal, May 1996

  • Wada, Hiroshi; Kamijoh, Takeshi
  • Japanese Journal of Applied Physics, Vol. 35, Issue Part 2, No. 5B
  • DOI: 10.1143/JJAP.35.L648

Thermal conductivity accumulation in amorphous silica and amorphous silicon
journal, April 2014


Ensemble averaging vs. time averaging in molecular dynamics simulations of thermal conductivity
journal, January 2015

  • Gordiz, Kiarash; Singh, David J.; Henry, Asegun
  • Journal of Applied Physics, Vol. 117, Issue 4
  • DOI: 10.1063/1.4906957

Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids
journal, March 1954

  • Green, Melville S.
  • The Journal of Chemical Physics, Vol. 22, Issue 3
  • DOI: 10.1063/1.1740082

Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field
journal, February 2007

  • Kobatake, Hidekazu; Fukuyama, Hiroyuki; Minato, Izuru
  • Applied Physics Letters, Vol. 90, Issue 9
  • DOI: 10.1063/1.2710220

Ab Initio Green-Kubo Approach for the Thermal Conductivity of Solids
journal, April 2017


Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

Thermal conductivity of solid argon from molecular dynamics simulations
journal, February 2004

  • Tretiakov, Konstantin V.; Scandolo, Sandro
  • The Journal of Chemical Physics, Vol. 120, Issue 8
  • DOI: 10.1063/1.1642611

Microscopic theory and quantum simulation of atomic heat transport
journal, October 2015

  • Marcolongo, Aris; Umari, Paolo; Baroni, Stefano
  • Nature Physics, Vol. 12, Issue 1
  • DOI: 10.1038/nphys3509

Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory
journal, June 1999


Energy density in density functional theory: Application to crystalline defects and surfaces
journal, March 2011


Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance
journal, November 1957

  • Kubo, Ryogo; Yokota, Mario; Nakajima, Sadao
  • Journal of the Physical Society of Japan, Vol. 12, Issue 11
  • DOI: 10.1143/JPSJ.12.1203

Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon
journal, December 2012

  • Howell, P. C.
  • The Journal of Chemical Physics, Vol. 137, Issue 22
  • DOI: 10.1063/1.4767516

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point
journal, May 1964


Molecular-dynamics simulation of thermal conductivity in amorphous silicon
journal, March 1991


Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations
journal, September 2015


Thermal conductivity of the Lennard‐Jones liquid by molecular dynamics calculations
journal, June 1987

  • Vogelsang, R.; Hoheisel, C.; Ciccotti, G.
  • The Journal of Chemical Physics, Vol. 86, Issue 11
  • DOI: 10.1063/1.452424

Ground State of the Electron Gas by a Stochastic Method
journal, August 1980


Elastic quantum transport calculations using auxiliary periodic boundary conditions
journal, July 2005


Thermal Conductivity of Glasses: Theory and Application to Amorphous Si
journal, February 1989


Predicting Phonon Properties from Equilibrium Molecular Dynamics Simulations
journal, January 2014


Theory of polarization of crystalline solids
journal, January 1993


Comparison of atomic-level simulation methods for computing thermal conductivity
journal, April 2002

  • Schelling, Patrick K.; Phillpot, Simon R.; Keblinski, Pawel
  • Physical Review B, Vol. 65, Issue 14
  • DOI: 10.1103/PhysRevB.65.144306

Thermal conductivity of thin films: Measurements and understanding
journal, May 1989

  • Cahill, David G.; Fischer, Henry E.; Klitsner, Tom
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 7, Issue 3
  • DOI: 10.1116/1.576265

Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations
journal, October 2014


Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon
journal, April 2004


Stationary nonequilibrium states by molecular dynamics. Fourier's law
journal, May 1982

  • Tenenbaum, Alexander; Ciccotti, Giovanni; Gallico, Renato
  • Physical Review A, Vol. 25, Issue 5
  • DOI: 10.1103/PhysRevA.25.2778

Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe
journal, January 2002


Mask-function real-space implementations of nonlocal pseudopotentials
journal, November 2001


Thermal Conductivity and Specific Heat of Thin-Film Amorphous Silicon
journal, February 2006


Structure of evaporated pure amorphous silicon: Neutron-diffraction and reverse Monte Carlo investigations
journal, September 1993


Charge-Density Patching Method for Unconventional Semiconductor Binary Systems
journal, June 2002