skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning

Abstract

Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. Lastly, this opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [2];  [3];  [3]; ORCiD logo [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [1];  [12];  [5];  [13] more »;  [1];  [14];  [4];  [15];  [3];  [16];  [1]; ORCiD logo [17];  [18];  [4];  [14];  [5];  [3];  [5];  [1];  [13];  [19];  [14]; ORCiD logo;  [1];  [13];  [3];  [1] « less
  1. Imperial College, London (United Kingdom). Dept. of Physics
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); European X-ray Free-Electron Laser (XFEL), Schenefeld (Germany)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  4. European X-ray Free-Electron Laser (XFEL), Schenefeld (Germany)
  5. Uppsala Univ. (Sweden). Dept. of Physics and Astronomy
  6. Univ. of Connecticut, Storrs, CT (United States). Dept. of Physics
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Argonne National Lab. (ANL), Argonne, IL (United States)
  8. Synchrotron SOLEIL, Saint-Aubin, Gif-sur-Yvette (France)
  9. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Stanford Univ., CA (United States). Dept. of Physics
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); California Lutheran Univ., Thousand Oaks, CA (United States). Dept. of Physics
  12. SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
  13. Univ. of Gothenburg (Sweden). Dept. of Physics
  14. Tohoku Univ., Sendai (Japan). Inst. of Multidisciplinary Research for Advanced Materials
  15. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Kassel (Germany). Inst. for Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT)
  16. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Technische Univ. of Munich (Germany). Dept. of Physics
  17. Univ. Kassel (Germany). Inst. for Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT)
  18. SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Univ. of Gothenburg (Sweden). Dept. of Physics
  19. Lund Univ. (Sweden). MAX IV Lab.
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Engineering and Physical Sciences Research Council (EPSRC); European Research Council (ERC)
OSTI Identifier:
1369405
Grant/Contract Number:  
AC02-76SF00515; SC0012376; EP/I032517/1
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Ultrafast photonics

Citation Formats

Sanchez-Gonzalez, A., Micaelli, P., Olivier, C., Barillot, T. R., Ilchen, M., Lutman, A. A., Marinelli, A., Maxwell, T., Achner, A., Agåker, M., Berrah, N., Bostedt, C., Bozek, J. D., Buck, J., Bucksbaum, P. H., Montero, S. Carron, Cooper, B., Cryan, J. P., Dong, M., Feifel, R., Frasinski, L. J., Fukuzawa, H., Galler, A., Hartmann, G., Hartmann, N., Helml, W., Johnson, A. S., Knie, A., Lindahl, A. O., Liu, J., Motomura, K., Mucke, M., O’Grady, C., Rubensson, J-E, Simpson, E. R., Squibb, R. J., Såthe, C., Ueda, K., Vacher, M., Walke, D. J., Zhaunerchyk, V., Coffee, R. N., and Marangos, J. P. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning. United States: N. p., 2017. Web. doi:10.1038/ncomms15461.
Sanchez-Gonzalez, A., Micaelli, P., Olivier, C., Barillot, T. R., Ilchen, M., Lutman, A. A., Marinelli, A., Maxwell, T., Achner, A., Agåker, M., Berrah, N., Bostedt, C., Bozek, J. D., Buck, J., Bucksbaum, P. H., Montero, S. Carron, Cooper, B., Cryan, J. P., Dong, M., Feifel, R., Frasinski, L. J., Fukuzawa, H., Galler, A., Hartmann, G., Hartmann, N., Helml, W., Johnson, A. S., Knie, A., Lindahl, A. O., Liu, J., Motomura, K., Mucke, M., O’Grady, C., Rubensson, J-E, Simpson, E. R., Squibb, R. J., Såthe, C., Ueda, K., Vacher, M., Walke, D. J., Zhaunerchyk, V., Coffee, R. N., & Marangos, J. P. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning. United States. doi:10.1038/ncomms15461.
Sanchez-Gonzalez, A., Micaelli, P., Olivier, C., Barillot, T. R., Ilchen, M., Lutman, A. A., Marinelli, A., Maxwell, T., Achner, A., Agåker, M., Berrah, N., Bostedt, C., Bozek, J. D., Buck, J., Bucksbaum, P. H., Montero, S. Carron, Cooper, B., Cryan, J. P., Dong, M., Feifel, R., Frasinski, L. J., Fukuzawa, H., Galler, A., Hartmann, G., Hartmann, N., Helml, W., Johnson, A. S., Knie, A., Lindahl, A. O., Liu, J., Motomura, K., Mucke, M., O’Grady, C., Rubensson, J-E, Simpson, E. R., Squibb, R. J., Såthe, C., Ueda, K., Vacher, M., Walke, D. J., Zhaunerchyk, V., Coffee, R. N., and Marangos, J. P. Mon . "Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning". United States. doi:10.1038/ncomms15461. https://www.osti.gov/servlets/purl/1369405.
@article{osti_1369405,
title = {Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning},
author = {Sanchez-Gonzalez, A. and Micaelli, P. and Olivier, C. and Barillot, T. R. and Ilchen, M. and Lutman, A. A. and Marinelli, A. and Maxwell, T. and Achner, A. and Agåker, M. and Berrah, N. and Bostedt, C. and Bozek, J. D. and Buck, J. and Bucksbaum, P. H. and Montero, S. Carron and Cooper, B. and Cryan, J. P. and Dong, M. and Feifel, R. and Frasinski, L. J. and Fukuzawa, H. and Galler, A. and Hartmann, G. and Hartmann, N. and Helml, W. and Johnson, A. S. and Knie, A. and Lindahl, A. O. and Liu, J. and Motomura, K. and Mucke, M. and O’Grady, C. and Rubensson, J-E and Simpson, E. R. and Squibb, R. J. and Såthe, C. and Ueda, K. and Vacher, M. and Walke, D. J. and Zhaunerchyk, V. and Coffee, R. N. and Marangos, J. P.},
abstractNote = {Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. Lastly, this opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.},
doi = {10.1038/ncomms15461},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Machine learning technique. Schematic technique based on machine learning to predict complex diagnostics at a high repetition rate using a fraction of fully diagnosed events containing all the information obtained at a much lower repetition rate. Information from fast diagnostics is available for all the events, but informationmore » from the complex diagnostics is only available for a small fraction of the events. The set of fully diagnosed events is divided into different subsets: the training set, the validation set and the test set. The training set is used to train a machine learning model on how to predict the information obtained with complex diagnostics using the simple diagnostics as input. The validation set is used to optimize the training process by minimizing the prediction errors on that set. The final prediction error for the optimized model is calculated using data from the test set. Once the final optimized model is trained and tested, it can be used to predict the missing information from the complex diagnostics for the remainder of the events.« less

Save / Share:

Works referenced in this record:

Rotation-invariant convolutional neural networks for galaxy morphology prediction
journal, April 2015

  • Dieleman, Sander; Willett, Kyle W.; Dambre, Joni
  • Monthly Notices of the Royal Astronomical Society, Vol. 450, Issue 2
  • DOI: 10.1093/mnras/stv632

A compact X-ray free-electron laser emitting in the sub-ångström region
journal, June 2012


Fresh-slice multicolour X-ray free-electron lasers
journal, October 2016

  • Lutman, Alberto A.; Maxwell, Timothy J.; MacArthur, James P.
  • Nature Photonics, Vol. 10, Issue 11
  • DOI: 10.1038/nphoton.2016.201

Neural neZtworks in astronomy
journal, April 2003


A tutorial on support vector regression
journal, August 2004


Two-colour hard X-ray free-electron laser with wide tunability
journal, December 2013

  • Hara, Toru; Inubushi, Yuichi; Katayama, Tetsuo
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3919

Introduction to the new science with X-ray free electron lasers
journal, November 2011


Femtosecond x-ray pulse temporal characterization in free-electron lasers using a transverse deflector
journal, December 2011


Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers
journal, February 2013


First lasing and operation of an ångstrom-wavelength free-electron laser
journal, August 2010


Time-resolved pump-probe experiments at the LCLS
journal, January 2010

  • Glownia, James M.; Cryan, J.; Andreasson, J.
  • Optics Express, Vol. 18, Issue 17
  • DOI: 10.1364/OE.18.017620

The experimental physics and industrial control system architecture: past, present, and future
journal, December 1994

  • Dalesio, Leo R.; Hill, Jeffrey O.; Kraimer, Martin
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 352, Issue 1-2
  • DOI: 10.1016/0168-9002(94)91493-1

Dynamics from noisy data with extreme timing uncertainty
journal, April 2016


Free-Electron Lasers: New Avenues in Molecular Physics and Photochemistry
journal, May 2012


Few-femtosecond time-resolved measurements of X-ray free-electron lasers
journal, April 2014

  • Behrens, C.; Decker, F. -J.; Ding, Y.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4762

Femtosecond X-ray protein nanocrystallography
journal, February 2011

  • Chapman, Henry N.; Fromme, Petra; Barty, Anton
  • Nature, Vol. 470, Issue 7332, p. 73-77
  • DOI: 10.1038/nature09750

Linac Coherent Light Source data analysis using psana
journal, March 2016

  • Damiani, D.; Dubrovin, M.; Gaponenko, I.
  • Journal of Applied Crystallography, Vol. 49, Issue 2
  • DOI: 10.1107/S1600576716004349

Auger electron and photoabsorption spectra of glycine in the vicinity of the oxygen K-edge measured with an X-FEL
journal, October 2015

  • Sanchez-Gonzalez, A.; Barillot, T. R.; Squibb, R. J.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 48, Issue 23
  • DOI: 10.1088/0953-4075/48/23/234004

Measurement of x-ray free-electron-laser pulse energies by photoluminescence in nitrogen gas
journal, March 2008

  • Hau–Riege, S. P.; Bionta, R. M.; Ryutov, D. D.
  • Journal of Applied Physics, Vol. 103, Issue 5
  • DOI: 10.1063/1.2844478

Experimental Demonstration of a Soft X-Ray Self-Seeded Free-Electron Laser
journal, February 2015


A convolutional neural network neutrino event classifier
journal, September 2016


Two-stage seeded soft-X-ray free-electron laser
journal, October 2013


Ultrafast isomerization initiated by X-ray core ionization
journal, September 2015

  • Liekhus-Schmaltz, Chelsea E.; Tenney, Ian; Osipov, Timur
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9199

Experimental Demonstration of Femtosecond Two-Color X-Ray Free-Electron Lasers
journal, March 2013


Sub-femtosecond precision measurement of relative X-ray arrival time for free-electron lasers
journal, July 2014


Imaging charge transfer in iodomethane upon x-ray photoabsorption
journal, July 2014


Collective instabilities and high-gain regime in a free electron laser
journal, July 1984


The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source
journal, April 2015

  • Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.
  • Journal of Synchrotron Radiation, Vol. 22, Issue 3
  • DOI: 10.1107/S1600577515004646

Polarization control in an X-ray free-electron laser
journal, May 2016

  • Lutman, Alberto A.; MacArthur, James P.; Ilchen, Markus
  • Nature Photonics, Vol. 10, Issue 7
  • DOI: 10.1038/nphoton.2016.79

Neural Networks for Modeling and Control of Particle Accelerators
journal, April 2016

  • Edelen, A. L.; Biedron, S. G.; Chase, B. E.
  • IEEE Transactions on Nuclear Science, Vol. 63, Issue 2
  • DOI: 10.1109/TNS.2016.2543203

Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet
journal, September 2012


A neural network clustering algorithm for the ATLAS silicon pixel detector
journal, September 2014


Transient lattice contraction in the solid-to-plasma transition
journal, January 2016

  • Ferguson, Ken R.; Bucher, Maximilian; Gorkhover, Tais
  • Science Advances, Vol. 2, Issue 1
  • DOI: 10.1126/sciadv.1500837

Femtosecond all-optical synchronization of an X-ray free-electron laser
journal, January 2015

  • Schulz, S.; Grguraš, I.; Behrens, C.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6938

Searching for exotic particles in high-energy physics with deep learning
journal, July 2014

  • Baldi, P.; Sadowski, P.; Whiteson, D.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5308

Neural Networks: A Review from a Statistical Perspective
journal, February 1994


Spectromicroscopy of Poly(ethylene terephthalate):  Comparison of Spectra and Radiation Damage Rates in X-ray Absorption and Electron Energy Loss
journal, March 1997

  • Rightor, E. G.; Hitchcock, A. P.; Ade, H.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 11
  • DOI: 10.1021/jp9622748

Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics
journal, May 2016

  • Picón, A.; Lehmann, C. S.; Bostedt, C.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11652

Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers
journal, November 2015

  • Ding, Y.; Behrens, C.; Coffee, R.
  • Applied Physics Letters, Vol. 107, Issue 19
  • DOI: 10.1063/1.4935429

Stimulated X-ray Raman scattering – a critical assessment of the building block of nonlinear X-ray spectroscopy
journal, January 2016

  • Kimberg, Victor; Sanchez-Gonzalez, Alvaro; Mercadier, Laurent
  • Faraday Discussions, Vol. 194
  • DOI: 10.1039/C6FD00103C

High-intensity double-pulse X-ray free-electron laser
journal, March 2015

  • Marinelli, A.; Ratner, D.; Lutman, A. A.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7369

Femtosecond and Subfemtosecond X-Ray Pulses from a Self-Amplified Spontaneous-Emission–Based Free-Electron Laser
journal, February 2004


Drift-free femtosecond timing synchronization of remote optical and microwave sources
journal, November 2008


Star–galaxy classification using deep convolutional neural networks
journal, October 2016

  • Kim, Edward J.; Brunner, Robert J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 464, Issue 4
  • DOI: 10.1093/mnras/stw2672

    Works referencing / citing this record:

    xcalib : a focal spot calibrator for intense X-ray free-electron laser pulses based on the charge state distributions of light atoms
    journal, May 2019

    • Toyota, Koudai; Jurek, Zoltan; Son, Sang-Kil
    • Journal of Synchrotron Radiation, Vol. 26, Issue 4
    • DOI: 10.1107/s1600577519003564

    Ultrashort Free-Electron Laser X-ray Pulses
    journal, September 2017

    • Helml, Wolfram; Grguraš, Ivanka; Juranić, Pavle
    • Applied Sciences, Vol. 7, Issue 9
    • DOI: 10.3390/app7090915

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.