DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response

Abstract

Here, we report a method for growing chemically pure, oxide-free, air-stable Gd nanoislands with enhanced magnetic properties. These nanoislands are grown by solid-state dewetting and are fully encapsulated in tungsten such that they remain stable in ambient environments. They display good crystalline properties with hexagonally close-packed crystal structure and strong preferential orientation. We show that the choice of substrate strongly affects their shape, crystal orientation, and magnetic properties. The temperature-dependent magnetic coercivity and remanence of the Gd islands can vary by as much as a factor of three depending on the substrate used. The magneto- caloric properties of Gd islands grown on a sapphire substrate exceed those of high-quality Gd thin films.

Authors:
ORCiD logo [1];  [1];  [2];  [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Reed College, Portland, OR (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1395145
Alternate Identifier(s):
OSTI ID: 1368414
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 111; Journal Issue: 1; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; gadolinium; magnetic entropy; magnetocaloric effect; nanoislands; nanostructuring

Citation Formats

Logan, Jonathan M., Rosenmann, Daniel, Sangpo, Tenzin, Holt, Martin V., Fuesz, Peter, and McNulty, Ian. Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response. United States: N. p., 2017. Web. doi:10.1063/1.4990388.
Logan, Jonathan M., Rosenmann, Daniel, Sangpo, Tenzin, Holt, Martin V., Fuesz, Peter, & McNulty, Ian. Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response. United States. https://doi.org/10.1063/1.4990388
Logan, Jonathan M., Rosenmann, Daniel, Sangpo, Tenzin, Holt, Martin V., Fuesz, Peter, and McNulty, Ian. Mon . "Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response". United States. https://doi.org/10.1063/1.4990388. https://www.osti.gov/servlets/purl/1395145.
@article{osti_1395145,
title = {Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response},
author = {Logan, Jonathan M. and Rosenmann, Daniel and Sangpo, Tenzin and Holt, Martin V. and Fuesz, Peter and McNulty, Ian},
abstractNote = {Here, we report a method for growing chemically pure, oxide-free, air-stable Gd nanoislands with enhanced magnetic properties. These nanoislands are grown by solid-state dewetting and are fully encapsulated in tungsten such that they remain stable in ambient environments. They display good crystalline properties with hexagonally close-packed crystal structure and strong preferential orientation. We show that the choice of substrate strongly affects their shape, crystal orientation, and magnetic properties. The temperature-dependent magnetic coercivity and remanence of the Gd islands can vary by as much as a factor of three depending on the substrate used. The magneto- caloric properties of Gd islands grown on a sapphire substrate exceed those of high-quality Gd thin films.},
doi = {10.1063/1.4990388},
journal = {Applied Physics Letters},
number = 1,
volume = 111,
place = {United States},
year = {Mon Jul 03 00:00:00 EDT 2017},
month = {Mon Jul 03 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Oxide-Free Gadolinium Nanocrystals with Large Magnetic Moments
journal, July 2015


Magnetocaloric materials: The search for new systems
journal, September 2012


Effects of preparation conditions on the magnetocaloric properties of Gd thin films
journal, May 2013

  • Kirby, Hillary F.; Belyea, Dustin D.; Willman, Jonathon T.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 31, Issue 3
  • DOI: 10.1116/1.4795817

Recent progress in high-resolution magnetic imaging using scanning probe techniques
journal, November 1999


Enhanced magnetocaloric effect in Gd 3 Ga 5− x Fe x O 12
journal, May 1993

  • McMichael, R. D.; Ritter, J. J.; Shull, R. D.
  • Journal of Applied Physics, Vol. 73, Issue 10
  • DOI: 10.1063/1.352443

Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat
journal, December 2012


Impact of interfacial magnetism on magnetocaloric properties of thin film heterostructures
journal, March 2011

  • Kirby, B. J.; Lau, J. W.; Williams, D. V.
  • Journal of Applied Physics, Vol. 109, Issue 6
  • DOI: 10.1063/1.3555101

Core(Fe)–Shell(Au) Nanoparticles Obtained from Thin Fe/Au Bilayers Employing Surface Segregation
journal, September 2014


Air- and Water-Stable Gold-Coated Gadolinium Metal Nanocrystals
journal, May 2013

  • Yan, Chao; Wagner, Michael J.
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl400720n

Magnetic anisotropy in nanostructured gadolinium
journal, March 2012

  • Prikhodko, Sergey V.; Wang, Chiu-Yen; Chen, Lih-Juann
  • Journal of Applied Physics, Vol. 111, Issue 5
  • DOI: 10.1063/1.3691220

Magnetocaloric effect in bulk nanocrystalline Gd metals by spark plasma sintering
journal, January 2012


Giant Magnetocaloric Effect in Gd5(Si2Ge2)
journal, June 1997


Isothermal entropy changes in nanocomposite Co:Ni 67 Cu 33
journal, April 2012

  • Michalski, S.; Skomski, R.; Li, X. -Zh.
  • Journal of Applied Physics, Vol. 111, Issue 7
  • DOI: 10.1063/1.3676423

Magnetocaloric effect in nanoscale thin films and heterostructures
journal, July 2014

  • Miller, Casey W.; Belyea, Dustin D.; Kirby, Brian J.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 32, Issue 4
  • DOI: 10.1116/1.4882858

A Miniature Magnetic-Piezoelectric Thermal Energy Harvester
journal, July 2015


Thermomagnetic conversion efficiencies for ferromagnetic materials
journal, December 2011

  • Sandoval, Samuel M.; Wetzlar, Kyle P.; Carman, Gregory P.
  • Journal of Applied Physics, Vol. 110, Issue 12
  • DOI: 10.1063/1.3672844

Magnetic irreversibility, spin-wave excitations and magnetocaloric effect in nanocrystalline Gadolinium
journal, January 2010


Reconstruction of the Shapes of Gold Nanocrystals Using Coherent X-Ray Diffraction
journal, October 2001


Magnetocaloric effect and magnetic refrigeration
journal, October 1999

  • Pecharsky, Vitalij K.; Gschneidner Jr, Karl A.
  • Journal of Magnetism and Magnetic Materials, Vol. 200, Issue 1-3
  • DOI: 10.1016/S0304-8853(99)00397-2

Magnetic phase transitions and the magnetothermal properties of gadolinium
journal, February 1998


Magnetocaloric properties of metallic nanostructures
journal, June 2015


Spontaneous Growth of Strain-Free Magnetite Nanocrystals via Temperature-Driven Dewetting
journal, January 2014

  • Takahashi, Ryota; Misumi, Hikaru; Yamamoto, Takahisa
  • Crystal Growth & Design, Vol. 14, Issue 3
  • DOI: 10.1021/cg5000414

The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2
journal, April 2003

  • Pecharsky, A. O.; Gschneidner, K. A.; Pecharsky, V. K.
  • Journal of Applied Physics, Vol. 93, Issue 8
  • DOI: 10.1063/1.1558210

Magnetic refrigerants with continuous phase transitions: Amorphous and nanostructured materials
journal, September 2012


Magnetic field dependence of the maximum adiabatic temperature change
journal, July 2011

  • Kuz'min, M. D.; Skokov, K. P.; Karpenkov, D. Yu.
  • Applied Physics Letters, Vol. 99, Issue 1
  • DOI: 10.1063/1.3607279