DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

Abstract

AbstractUndesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.

Authors:
 [1];  [1];  [1];  [1];  [2];  [2];  [1]
  1. Univ. of Texas, Austin, TX (United States). Materials Science and Engineering Program and Texas Materials Inst.
  2. Ulsan National Inst. of Science and Technology (UNIST), Ulsan (South Korea). Dept. of Energy Engineering, School of Energy and Chemical Engineering
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States); Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Science (SC); USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1368376
Alternate Identifier(s):
OSTI ID: 2217289
Grant/Contract Number:  
EE0006447; EE0007762
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; cathodes

Citation Formats

Li, Wangda, Dolocan, Andrei, Oh, Pilgun, Celio, Hugo, Park, Suhyeon, Cho, Jaephil, and Manthiram, Arumugam. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. United States: N. p., 2017. Web. doi:10.1038/ncomms14589.
Li, Wangda, Dolocan, Andrei, Oh, Pilgun, Celio, Hugo, Park, Suhyeon, Cho, Jaephil, & Manthiram, Arumugam. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. United States. https://doi.org/10.1038/ncomms14589
Li, Wangda, Dolocan, Andrei, Oh, Pilgun, Celio, Hugo, Park, Suhyeon, Cho, Jaephil, and Manthiram, Arumugam. Wed . "Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries". United States. https://doi.org/10.1038/ncomms14589. https://www.osti.gov/servlets/purl/1368376.
@article{osti_1368376,
title = {Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries},
author = {Li, Wangda and Dolocan, Andrei and Oh, Pilgun and Celio, Hugo and Park, Suhyeon and Cho, Jaephil and Manthiram, Arumugam},
abstractNote = {AbstractUndesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.},
doi = {10.1038/ncomms14589},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {Wed Apr 26 00:00:00 EDT 2017},
month = {Wed Apr 26 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 261 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
journal, March 2015

  • Liu, Wen; Oh, Pilgun; Liu, Xien
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201409262

The cathode–electrolyte interface in the Li-ion battery
journal, November 2004


Role of Alumina Coating on Li−Ni−Co−Mn−O Particles as Positive Electrode Material for Lithium-Ion Batteries
journal, July 2005

  • Myung, Seung-Taek; Izumi, Kentarou; Komaba, Shinichi
  • Chemistry of Materials, Vol. 17, Issue 14, p. 3695-3704
  • DOI: 10.1021/cm050566s

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions
journal, February 2012


Bulk-Type All Solid-State Batteries with 5 V Class LiNi 0.5 Mn 1.5 O 4 Cathode and Li 10 GeP 2 S 12 Solid Electrolyte
journal, April 2016


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn 1.6 Ni 0.4 O 4 /Li 4 Ti 5 O 12 Lithium-Ion Battery
journal, May 2010

  • Dedryvère, R.; Foix, D.; Franger, S.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 24
  • DOI: 10.1021/jp1026509

Synthesis of Nanometric LiMnPO 4 via a Two-Step Technique
journal, February 2012

  • Pivko, Maja; Bele, Marjan; Tchernychova, Elena
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm203095d

Study of the Cathode–Electrolyte Interface of LiMn[sub 1.5]Ni[sub 0.5]O[sub 4] Synthesized by a Sol–Gel Method for Li-Ion Batteries
journal, January 2010

  • Duncan, Hugues; Abu-Lebdeh, Yaser; Davidson, Isobel J.
  • Journal of The Electrochemical Society, Vol. 157, Issue 4
  • DOI: 10.1149/1.3321710

Principal Factors of Carbon Conductive Agents that Contribute to the Gas Formation in High-Voltage Cathode Systems
journal, January 2015

  • Kajiyama, Akihisa; Masaki, Ryuta; Wakiyama, Tsuyoshi
  • Journal of The Electrochemical Society, Vol. 162, Issue 8
  • DOI: 10.1149/2.0571508jes

Investigation of graphitic carbon foams/LiNiPO4 composites
journal, July 2012

  • Dimesso, Lucangelo; Becker, Dirk; Spanheimer, Christina
  • Journal of Solid State Electrochemistry, Vol. 16, Issue 12
  • DOI: 10.1007/s10008-012-1817-1

Influence of Thermal Treated Carbon Black Conductive Additive on the Performance of High Voltage Spinel Cr-Doped LiNi 0.5 Mn 1.5 O 4 Composite Cathode Electrode
journal, December 2014

  • Qi, Xin; Blizanac, Berislav; DuPasquier, Aurelien
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0401503jes

Anodic Oxidation of Conductive Carbon and Ethylene Carbonate in High-Voltage Li-Ion Batteries Quantified by On-Line Electrochemical Mass Spectrometry
journal, January 2015

  • Metzger, Michael; Marino, Cyril; Sicklinger, Johannes
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0951506jes

A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries
journal, January 2014

  • Manthiram, Arumugam; Chemelewski, Katharine; Lee, Eun-Sung
  • Energy & Environmental Science, Vol. 7, Issue 4
  • DOI: 10.1039/c3ee42981d

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Synthesis and Characterization of Li[(Ni 0.8 Co 0.1 Mn 0.1 ) 0.8 (Ni 0.5 Mn 0.5 ) 0.2 ]O 2 with the Microscale Core−Shell Structure as the Positive Electrode Material for Lithium Batteries
journal, September 2005

  • Sun, Yang-Kook; Myung, Seung-Taek; Kim, Myung-Hoon
  • Journal of the American Chemical Society, Vol. 127, Issue 38
  • DOI: 10.1021/ja053675g

Electron Spectroscopy Study of Li[Ni,Co,Mn]O 2 /Electrolyte Interface: Electronic Structure, Interface Composition, and Device Implications
journal, April 2015

  • Cherkashinin, Gennady; Motzko, Markus; Schulz, Natalia
  • Chemistry of Materials, Vol. 27, Issue 8
  • DOI: 10.1021/cm5047534

Revealing the planar chemistry of two-dimensional heterostructures at the atomic level
journal, June 2015

  • Chou, Harry; Ismach, Ariel; Ghosh, Rudresh
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8482

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells
journal, January 2011

  • Smith, A. J.; Burns, J. C.; Zhao, Xuemei
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3557892

Short-range cation ordering in Li x Ni 2 x O 2
journal, April 1993


High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

Aging of the LiNi[sub 1∕2]Mn[sub 1∕2]O[sub 2] Positive Electrode Interface in Electrolyte
journal, January 2009

  • Dupré, Nicolas; Martin, Jean-Frédéric; Oliveri, Julie
  • Journal of The Electrochemical Society, Vol. 156, Issue 5
  • DOI: 10.1149/1.3098494

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Understanding Transition-Metal Dissolution Behavior in LiNi 0.5 Mn 1.5 O 4 High-Voltage Spinel for Lithium Ion Batteries
journal, July 2013

  • Pieczonka, Nicholas P. W.; Liu, Zhongyi; Lu, Peng
  • The Journal of Physical Chemistry C, Vol. 117, Issue 31
  • DOI: 10.1021/jp405158m

Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries
journal, March 2007


Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

Electrochemical activity of carbon blacks in LiPF6-based organic electrolytes
journal, January 2014


Development of novel lithium borate additives for designed surface modification of high voltage LiNi 0.5 Mn 1.5 O 4 cathodes
journal, January 2016

  • Xu, Mengqing; Zhou, Liu; Dong, Yingnan
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C5EE03360H

The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes
journal, August 2015


Analysis of the Interphase on Carbon Black Formed in High Voltage Batteries
journal, January 2015

  • Younesi, Reza; Christiansen, Ane Sælland; Scipioni, Roberto
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0761507jes

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Lithium Batteries and Cathode Materials
journal, December 2004


Stable Lithium Electrodeposition in Liquid and Nanoporous Solid Electrolytes
text, January 2014


Lithium Batteries and Cathode Materials
journal, December 2004


Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions
journal, February 2012


Electrochemical activity of carbon blacks in LiPF6-based organic electrolytes
journal, January 2014


Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Revealing the planar chemistry of two-dimensional heterostructures at the atomic level
journal, June 2015

  • Chou, Harry; Ismach, Ariel; Ghosh, Rudresh
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8482

High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Anodic Oxidation of Conductive Carbon and Ethylene Carbonate in High-Voltage Li-Ion Batteries Quantified by On-Line Electrochemical Mass Spectrometry
journal, January 2015

  • Metzger, Michael; Marino, Cyril; Sicklinger, Johannes
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0951506jes

Works referencing / citing this record:

Unveiling Nickel Chemistry in Stabilizing High‐Voltage Cobalt‐Rich Cathodes for Lithium‐Ion Batteries
journal, November 2019

  • Yoon, Moonsu; Dong, Yanhao; Yoo, Youngbin
  • Advanced Functional Materials, Vol. 30, Issue 6
  • DOI: 10.1002/adfm.201907903

30 Years of Lithium-Ion Batteries
journal, June 2018


Elucidating the Mechanism Involved in the Performance Improvement of Lithium‐Ion Transition Metal Oxide Battery by Conducting Polymer
journal, February 2019

  • Kim, Taehoon; Ono, Luis K.; Qi, Yabing
  • Advanced Materials Interfaces, Vol. 6, Issue 7
  • DOI: 10.1002/admi.201801785

Prospect and Reality of Ni-Rich Cathode for Commercialization
journal, November 2017

  • Kim, Junhyeok; Lee, Hyomyung; Cha, Hyungyeon
  • Advanced Energy Materials, Vol. 8, Issue 6
  • DOI: 10.1002/aenm.201702028

Mn versus Al in Layered Oxide Cathodes in Lithium-Ion Batteries: A Comprehensive Evaluation on Long-Term Cyclability
journal, February 2018

  • Li, Wangda; Liu, Xiaoming; Celio, Hugo
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201703154

A Flexible and Ultrahigh Energy Density Capacitor via Enhancing Surface/Interface of Carbon Cloth Supported Colloids
journal, March 2018

  • Liang, Xitong; Chen, Kunfeng; Xue, Dongfeng
  • Advanced Energy Materials, Vol. 8, Issue 16
  • DOI: 10.1002/aenm.201703329

High-Performance Reversible Aqueous Zn-Ion Battery Based on Porous MnO x Nanorods Coated by MOF-Derived N-Doped Carbon
journal, August 2018

  • Fu, Yanqing; Wei, Qiliang; Zhang, Gaixia
  • Advanced Energy Materials, Vol. 8, Issue 26
  • DOI: 10.1002/aenm.201801445

Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase
journal, September 2018


Highly Tough, Li‐Metal Compatible Organic–Inorganic Double‐Network Solvate Ionogel
journal, April 2019


Ethylene Carbonate‐Free Electrolytes for High‐Nickel Layered Oxide Cathodes in Lithium‐Ion Batteries
journal, June 2019

  • Li, Wangda; Dolocan, Andrei; Li, Jianyu
  • Advanced Energy Materials, Vol. 9, Issue 29
  • DOI: 10.1002/aenm.201901152

Controllable Cathode–Electrolyte Interface of Li[Ni 0.8 Co 0.1 Mn 0.1 ]O 2 for Lithium Ion Batteries: A Review
journal, August 2019

  • Maleki Kheimeh Sari, Hirbod; Li, Xifei
  • Advanced Energy Materials, Vol. 9, Issue 39
  • DOI: 10.1002/aenm.201901597

Recent progress on lithium-ion batteries with high electrochemical performance
journal, February 2019


Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery
journal, October 2019


Graphene/transition metal dichalcogenides hybrid supercapacitor electrode: status, challenges, and perspectives
journal, October 2018

  • Seman, Raja Noor Amalina Raja; Azam, Mohd Asyadi; Ani, Mohd Hanafi
  • Nanotechnology, Vol. 29, Issue 50
  • DOI: 10.1088/1361-6528/aae3da

XPS-Surface Analysis of SEI Layers on Li-Ion Cathodes: Part I. Investigation of Initial Surface Chemistry
journal, January 2018

  • Schulz, Natalia; Hausbrand, René; Dimesso, Lucangelo
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0061805jes

XPS-Surface Analysis of SEI Layers on Li-Ion Cathodes: Part II. SEI-Composition and Formation inside Composite Electrodes
journal, January 2018

  • Schulz, Natalia; Hausbrand, René; Wittich, Carolin
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0881803jes

Exploring Interactions between Electrodes in Li[Ni x Mn y Co 1-xy ]O 2 /Graphite Cells through Electrode/Electrolyte Interfaces Analysis
journal, January 2017

  • Madec, Lénaïc; Ellis, Leah D.
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.1011714jes

Binding Energy Referencing for XPS in Alkali Metal-Based Battery Materials Research (II): Application to Complex Composite Electrodes
journal, August 2018


An Outlook on Lithium Ion Battery Technology
journal, September 2017


A reflection on lithium-ion battery cathode chemistry
journal, March 2020


Interaction in Li@Fullerenes and Li+@Fullerenes: First Principle Insights to Li-Based Endohedral Fullerenes
journal, April 2019

  • Bai, Hongcun; Gao, Hongfeng; Feng, Wei
  • Nanomaterials, Vol. 9, Issue 4
  • DOI: 10.3390/nano9040630