skip to main content

DOE PAGESDOE PAGES

Title: The National Ignition Facility modular Kirkpatrick-Baez microscope

Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ~10-25µm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ~5 µm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration, an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ~12x magnification, <8 µm resolution and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a ‘narrow band’ energy response at 10.2keV with ΔE~3keV. By adjusting the mirror coating only, the energy response can be matched to future experimental requirements. Here, several mirror packs have been commissioned and are interchangeable in the diagnosticmore » snout.« less
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. General Atomics, San Diego, CA (United States)
Publication Date:
Report Number(s):
LLNL-CONF-694175
Journal ID: ISSN 0034-6748; RSINAK
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 87; Journal Issue: 11; Conference: Proceedings of the 21st Topical Conference on High-Temperature Plasma Diagnostics, Madison, WI (United States), 5-9 Jun 2016; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 70 PLASMA PHYSICS AND FUSION
OSTI Identifier:
1367974