skip to main content

DOE PAGESDOE PAGES

Title: 3D modeling of missing pellet surface defects in BWR fuel

One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can be used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed in this paper. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of amore » boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Finally, parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding adjacent to the defect.« less
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
Report Number(s):
INL/JOU-15-37272
Journal ID: ISSN 0029-5493; PII: S0029549316302187
Grant/Contract Number:
AC07-05ID14517
Type:
Accepted Manuscript
Journal Name:
Nuclear Engineering and Design
Additional Journal Information:
Journal Volume: 307; Journal ID: ISSN 0029-5493
Publisher:
Elsevier
Research Org:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
Language:
English
Subject:
22 GENERAL STUDIES OF NUCLEAR REACTORS; 97 MATHEMATICS AND COMPUTING; 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; defective pellet; multiphysics simulation; nuclear fuel performance
OSTI Identifier:
1367874
Alternate Identifier(s):
OSTI ID: 1397893

Spencer, B. W., Williamson, R. L., Stafford, D. S., Novascone, S. R., Hales, J. D., and Pastore, G.. 3D modeling of missing pellet surface defects in BWR fuel. United States: N. p., Web. doi:10.1016/j.nucengdes.2016.07.008.
Spencer, B. W., Williamson, R. L., Stafford, D. S., Novascone, S. R., Hales, J. D., & Pastore, G.. 3D modeling of missing pellet surface defects in BWR fuel. United States. doi:10.1016/j.nucengdes.2016.07.008.
Spencer, B. W., Williamson, R. L., Stafford, D. S., Novascone, S. R., Hales, J. D., and Pastore, G.. 2016. "3D modeling of missing pellet surface defects in BWR fuel". United States. doi:10.1016/j.nucengdes.2016.07.008. https://www.osti.gov/servlets/purl/1367874.
@article{osti_1367874,
title = {3D modeling of missing pellet surface defects in BWR fuel},
author = {Spencer, B. W. and Williamson, R. L. and Stafford, D. S. and Novascone, S. R. and Hales, J. D. and Pastore, G.},
abstractNote = {One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can be used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed in this paper. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Finally, parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding adjacent to the defect.},
doi = {10.1016/j.nucengdes.2016.07.008},
journal = {Nuclear Engineering and Design},
number = ,
volume = 307,
place = {United States},
year = {2016},
month = {7}
}