skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Learning through ferroelectric domain dynamics in solid-state synapses

Abstract

In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Finally, based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.

Authors:
 [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [5];  [2];  [6];  [2];  [2];  [7];  [3];  [4];  [2];  [2];  [3];  [2]
  1. Univ. Paris-Saclay, Palaiseau (France); ETH Zurich, Zurich (Switzerland)
  2. Univ. Paris-Saclay, Palaiseau (France)
  3. Univ. of Bordeaux, Talence (France)
  4. Univ. of Arkansas, Fayetteville, AR (United States)
  5. Univ. Paris-Saclay, Orsay Cedex (France)
  6. Univ. Paris-Saclay, Palaiseau (France); Luxembourg Institute of Science and Technology (LIST), Belvaux (Luxembourg)
  7. Campus de l'Ecole Polytechnique, Palaiseau (France)
Publication Date:
Research Org.:
Univ. of Arkansas, Fayetteville, AR (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Defense Advanced Research Projects Agency (DARPA); European Union (EU); European Research Council (ERC)
OSTI Identifier:
1367544
Grant/Contract Number:  
SC0002220; HR0011-15-2- 0038
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; electronic devices; ferroelectrics and multiferroics

Citation Formats

Boyn, Soren, Grollier, Julie, Lecerf, Gwendal, Xu, Bin, Locatelli, Nicolas, Fusil, Stephane, Girod, Stephanie, Carretero, Cecile, Garcia, Karin, Xavier, Stephane, Tomas, Jean, Bellaiche, Laurent, Bibes, Manuel, Barthelemy, Agnes, Saighi, Sylvain, and Garcia, Vincent. Learning through ferroelectric domain dynamics in solid-state synapses. United States: N. p., 2017. Web. doi:10.1038/ncomms14736.
Boyn, Soren, Grollier, Julie, Lecerf, Gwendal, Xu, Bin, Locatelli, Nicolas, Fusil, Stephane, Girod, Stephanie, Carretero, Cecile, Garcia, Karin, Xavier, Stephane, Tomas, Jean, Bellaiche, Laurent, Bibes, Manuel, Barthelemy, Agnes, Saighi, Sylvain, & Garcia, Vincent. Learning through ferroelectric domain dynamics in solid-state synapses. United States. doi:10.1038/ncomms14736.
Boyn, Soren, Grollier, Julie, Lecerf, Gwendal, Xu, Bin, Locatelli, Nicolas, Fusil, Stephane, Girod, Stephanie, Carretero, Cecile, Garcia, Karin, Xavier, Stephane, Tomas, Jean, Bellaiche, Laurent, Bibes, Manuel, Barthelemy, Agnes, Saighi, Sylvain, and Garcia, Vincent. Mon . "Learning through ferroelectric domain dynamics in solid-state synapses". United States. doi:10.1038/ncomms14736. https://www.osti.gov/servlets/purl/1367544.
@article{osti_1367544,
title = {Learning through ferroelectric domain dynamics in solid-state synapses},
author = {Boyn, Soren and Grollier, Julie and Lecerf, Gwendal and Xu, Bin and Locatelli, Nicolas and Fusil, Stephane and Girod, Stephanie and Carretero, Cecile and Garcia, Karin and Xavier, Stephane and Tomas, Jean and Bellaiche, Laurent and Bibes, Manuel and Barthelemy, Agnes and Saighi, Sylvain and Garcia, Vincent},
abstractNote = {In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Finally, based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.},
doi = {10.1038/ncomms14736},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {2017},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The missing memristor found
journal, May 2008

  • Strukov, Dmitri B.; Snider, Gregory S.; Stewart, Duncan R.
  • Nature, Vol. 453, Issue 7191
  • DOI: 10.1038/nature06932

CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory
journal, February 2008


A ferroelectric memristor
journal, September 2012

  • Chanthbouala, André; Garcia, Vincent; Cherifi, Ryan O.
  • Nature Materials, Vol. 11, Issue 10
  • DOI: 10.1038/nmat3415

Deep learning
journal, May 2015

  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14539

TiO 2 —a prototypical memristive material
journal, May 2011


APPLIED PHYSICS: Tunneling Across a Ferroelectric
journal, July 2006


Training and operation of an integrated neuromorphic network based on metal-oxide memristors
journal, May 2015

  • Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B. D.
  • Nature, Vol. 521, Issue 7550
  • DOI: 10.1038/nature14441

On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex
journal, January 2011

  • Zamarreño-Ramos, Carlos; Camuñas-Mesa, Luis A.; Pérez-Carrasco, Jose A.
  • Frontiers in Neuroscience, Vol. 5
  • DOI: 10.3389/fnins.2011.00026

Depth Profiling Charge Accumulation from a Ferroelectric into a Doped Mott Insulator
journal, March 2015


Four-dimensional address topology for circuits with stacked multilayer crossbar arrays
journal, November 2009

  • Strukov, D. B.; Williams, R. S.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 48
  • DOI: 10.1073/pnas.0906949106

Competitive STDP-Based Spike Pattern Learning
journal, May 2009


Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films
journal, December 2002


Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing
journal, June 2011

  • Kuzum, Duygu; Jeyasingh, Rakesh G. D.; Lee, Byoungil
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl201040y

High-performance ferroelectric memory based on fully patterned tunnel junctions
journal, February 2014

  • Boyn, S.; Girod, S.; Garcia, V.
  • Applied Physics Letters, Vol. 104, Issue 5
  • DOI: 10.1063/1.4864100

Synaptic plasticity: taming the beast
journal, November 2000

  • Abbott, L. F.; Nelson, Sacha B.
  • Nature Neuroscience, Vol. 3, Issue S11
  • DOI: 10.1038/81453

Memristor-The missing circuit element
journal, January 1971


Giant Electroresistance of Super-tetragonal BiFeO 3 -Based Ferroelectric Tunnel Junctions
journal, May 2013

  • Yamada, Hiroyuki; Garcia, Vincent; Fusil, Stéphane
  • ACS Nano, Vol. 7, Issue 6
  • DOI: 10.1021/nn401378t

A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing
journal, December 2011

  • Alibart, Fabien; Pleutin, Stéphane; Bichler, Olivier
  • Advanced Functional Materials, Vol. 22, Issue 3
  • DOI: 10.1002/adfm.201101935

Nanoscale Memristor Device as Synapse in Neuromorphic Systems
journal, April 2010

  • Jo, Sung Hyun; Chang, Ting; Ebong, Idongesit
  • Nano Letters, Vol. 10, Issue 4, p. 1297-1301
  • DOI: 10.1021/nl904092h

Ferromagnetism in multiferroic BiFeO 3 films: A first-principles-based study
journal, April 2010


Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses
journal, July 2013

  • Suri, Manan; Querlioz, Damien; Bichler, Olivier
  • IEEE Transactions on Electron Devices, Vol. 60, Issue 7
  • DOI: 10.1109/TED.2013.2263000

Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs
journal, January 1997


Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device
journal, May 2015

  • Wang, Yu-Fen; Lin, Yen-Chuan; Wang, I-Ting
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10150

Data Clustering using Memristor Networks
journal, May 2015

  • Choi, Shinhyun; Sheridan, Patrick; Lu, Wei D.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10492

A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures
journal, July 2011

  • Lee, Myoung-Jae; Lee, Chang Bum; Lee, Dongsoo
  • Nature Materials, Vol. 10, Issue 8, p. 625-630
  • DOI: 10.1038/nmat3070

Domain Switching Kinetics in Disordered Ferroelectric Thin Films
journal, December 2007


Ferroelectric tunnel junctions for information storage and processing
journal, July 2014

  • Garcia, Vincent; Bibes, Manuel
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5289

Ultrafast Switching of the Electric Polarization and Magnetic Chirality in BiFeO 3 by an Electric Field
journal, April 2014


Memristive devices for computing
journal, January 2013

  • Yang, J. Joshua; Strukov, Dmitri B.; Stewart, Duncan R.
  • Nature Nanotechnology, Vol. 8, Issue 1, p. 13-24
  • DOI: 10.1038/nnano.2012.240

Direct studies of domain switching dynamics in thin film ferroelectric capacitors
journal, August 2005

  • Gruverman, A.; Rodriguez, B. J.; Dehoff, C.
  • Applied Physics Letters, Vol. 87, Issue 8
  • DOI: 10.1063/1.2010605

Finite-Temperature Properties of Multiferroic BiFeO 3
journal, November 2007


Atomistic Molecular Dynamic Simulations of Multiferroics
journal, August 2012


Ultrafast Synaptic Events in a Chalcogenide Memristor
journal, April 2013

  • Li, Yi; Zhong, Yingpeng; Xu, Lei
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01619

Novel synaptic memory device for neuromorphic computing
journal, June 2014

  • Mandal, Saptarshi; El-Amin, Ammaarah; Alexander, Kaitlyn
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05333

Memristance can explain Spike-Time-Dependent-Plasticity in Neural Synapses
journal, March 2009


    Works referencing / citing this record:

    Neuromorphic computing with multi-memristive synapses
    journal, June 2018


    Functional Oxides for Photoneuromorphic Engineering: Toward a Solar Brain
    journal, June 2019


    Functional Oxides for Photoneuromorphic Engineering: Toward a Solar Brain
    journal, June 2019


    Neuromorphic computing with multi-memristive synapses
    journal, June 2018


    Inverse transition of labyrinthine domain patterns in ferroelectric thin films
    journal, January 2020