skip to main content

DOE PAGESDOE PAGES

Title: Analysis and modification of defective surface aggregates on PCDTBT:PCBM solar cell blends using combined Kelvin probe, conductive and bimodal atomic force microscopy

Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.
Authors:
 [1] ;  [1] ;  [1]
  1. George Washington Univ., Washington, DC (United States)
Publication Date:
Grant/Contract Number:
SC0011912
Type:
Accepted Manuscript
Journal Name:
Beilstein Journal of Nanotechnology
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2190-4286
Publisher:
Beilstein Institute
Research Org:
George Washington Univ., Washington, DC (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; conductive atomic force microscopy; Kelvin probe force microscopy; multifrequency AFM; organic photovoltaics; polymer solar cells; surface defects
OSTI Identifier:
1367086