DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Triplet–triplet energy transfer in artificial and natural photosynthetic antennas

Abstract

In photosynthetic organisms, protection against photo-oxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll to carotenoid triplet-triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, while it is ultrafast in the oxygen-rich chloroplasts of oxygen evolving photosynthetic organisms. In order to better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET including a resonance Raman based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by DFT calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light harvesting proteins frommore » oxygenic (LHCII) and anoxygenic organisms (LH2). In conclusion, both DFT and EPR analysis further indicates that upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE; European Research Council (ERC); Agence Nationale de la recherche (ANR); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22), Chemical Sciences, Geosciences, and Biosciences Division
OSTI Identifier:
1366576
Alternate Identifier(s):
OSTI ID: 1374200
Grant/Contract Number:  
FG02-03ER15393; SC0001059; AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 59 BASIC BIOLOGICAL SCIENCES; artificial photosynthesis; DFT; EPR; QM/MM; carotenoid; natural bond orbital analysis; photoprotection; phthalocyanine; resonance Raman; transient absorption spectroscopy; triplet-triplet coupling; triplet-triplet energy transfer

Citation Formats

Ho, Junming, Kish, Elizabeth, Méndez-Hernández, Dalvin D., WongCarter, Katherine, Pillai, Smitha, Kodis, Gerdenis, Niklas, Jens, Poluektov, Oleg G., Gust, Devens, Moore, Thomas A., Moore, Ana L., Batista, Victor S., and Robert, Bruno. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas. United States: N. p., 2017. Web. doi:10.1073/pnas.1614857114.
Ho, Junming, Kish, Elizabeth, Méndez-Hernández, Dalvin D., WongCarter, Katherine, Pillai, Smitha, Kodis, Gerdenis, Niklas, Jens, Poluektov, Oleg G., Gust, Devens, Moore, Thomas A., Moore, Ana L., Batista, Victor S., & Robert, Bruno. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas. United States. https://doi.org/10.1073/pnas.1614857114
Ho, Junming, Kish, Elizabeth, Méndez-Hernández, Dalvin D., WongCarter, Katherine, Pillai, Smitha, Kodis, Gerdenis, Niklas, Jens, Poluektov, Oleg G., Gust, Devens, Moore, Thomas A., Moore, Ana L., Batista, Victor S., and Robert, Bruno. Mon . "Triplet–triplet energy transfer in artificial and natural photosynthetic antennas". United States. https://doi.org/10.1073/pnas.1614857114.
@article{osti_1366576,
title = {Triplet–triplet energy transfer in artificial and natural photosynthetic antennas},
author = {Ho, Junming and Kish, Elizabeth and Méndez-Hernández, Dalvin D. and WongCarter, Katherine and Pillai, Smitha and Kodis, Gerdenis and Niklas, Jens and Poluektov, Oleg G. and Gust, Devens and Moore, Thomas A. and Moore, Ana L. and Batista, Victor S. and Robert, Bruno},
abstractNote = {In photosynthetic organisms, protection against photo-oxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll to carotenoid triplet-triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, while it is ultrafast in the oxygen-rich chloroplasts of oxygen evolving photosynthetic organisms. In order to better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET including a resonance Raman based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by DFT calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). In conclusion, both DFT and EPR analysis further indicates that upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.},
doi = {10.1073/pnas.1614857114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = ,
volume = ,
place = {United States},
year = {Mon Jun 26 00:00:00 EDT 2017},
month = {Mon Jun 26 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1614857114

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Time-resolved resonance Raman spectroscopy of carotenoids in Triton X-100 micellar solution
journal, January 1993

  • Conn, P. F.; Haley, J.; Lambert, C. R.
  • Journal of the Chemical Society, Faraday Transactions, Vol. 89, Issue 11
  • DOI: 10.1039/ft9938901753

Excited State Properties of 3′-Hydroxyechinenone in Solvents and in the Orange Carotenoid Protein from Synechocystis sp. PCC 6803
journal, May 2014

  • Niedzwiedzki, Dariusz M.; Liu, Haijun; Blankenship, Robert E.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 23
  • DOI: 10.1021/jp5041794

Microwave and optical spectroscopy of carotenoid triplets in light-harvesting complex LHC II of spinach by absorbance-detected magnetic resonance
journal, June 1991

  • van der Vos, R.; Carbonera, D.; Hoff, A. J.
  • Applied Magnetic Resonance, Vol. 2, Issue 2
  • DOI: 10.1007/BF03166035

The electronic structure of the lutein triplet state in plant light-harvesting complex II
journal, January 2012

  • Salvadori, Enrico; Di Valentin, Marilena; Kay, Christopher W. M.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 35
  • DOI: 10.1039/c2cp40877e

Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

Ab Inito Study on Triplet Excitation Energy Transfer in Photosynthetic Light-Harvesting Complexes
journal, April 2011

  • You, Zhi-Qiang; Hsu, Chao-Ping
  • The Journal of Physical Chemistry A, Vol. 115, Issue 16
  • DOI: 10.1021/jp200200x

Unravelling the Origin of Intermolecular Interactions Using Absolutely Localized Molecular Orbitals
journal, September 2007

  • Khaliullin, Rustam Z.; Cobar, Erika A.; Lochan, Rohini C.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 36
  • DOI: 10.1021/jp073685z

Identification of the Sites of Chlorophyll Triplet Quenching in Relation to the Structure of LHC-II from Higher Plants. Evidence from EPR Spectroscopy
journal, October 2009

  • Di Valentin, Marilena; Biasibetti, Federico; Ceola, Stefano
  • The Journal of Physical Chemistry B, Vol. 113, Issue 39
  • DOI: 10.1021/jp904012j

EPR Investigation of Photoinduced Radical Pair Formation and Decay to a Triplet State in a Carotene−Porphyrin−Fullerene Triad
journal, May 1998

  • Carbonera, Donatella; Di Valentin, Marilena; Corvaja, Carlo
  • Journal of the American Chemical Society, Vol. 120, Issue 18
  • DOI: 10.1021/ja9712074

Tuning the Spectroscopic Properties of Aryl Carotenoids by Slight Changes in Structure
journal, January 2015

  • Fuciman, Marcel; Keşan, Gürkan; LaFountain, Amy M.
  • The Journal of Physical Chemistry B, Vol. 119, Issue 4
  • DOI: 10.1021/jp512354r

Quantum organic photochemistry. I. Intramolecular potential energy surfaces for the lowest 3.pi..pi. state of polyenes
journal, September 1971

  • Baird, N. Colin; West, Richard M.
  • Journal of the American Chemical Society, Vol. 93, Issue 18
  • DOI: 10.1021/ja00747a015

Stereodynamics of intramolecular triplet energy transfer in carotenoporphyrins
journal, June 1985

  • Gust, Devens; Moore, Thomas A.; Bensasson, Rene V.
  • Journal of the American Chemical Society, Vol. 107, Issue 12
  • DOI: 10.1021/ja00298a038

Electronic Absorption and Ground State Structure of Carotenoid Molecules
journal, January 2013

  • Mendes-Pinto, Maria M.; Sansiaume, Elodie; Hashimoto, Hideki
  • The Journal of Physical Chemistry B, Vol. 117, Issue 38
  • DOI: 10.1021/jp309908r

Resonance Raman Spectra of Carotenoid Molecules: Influence of Methyl Substitutions
journal, December 2014

  • Macernis, Mindaugas; Galzerano, Denise; Sulskus, Juozas
  • The Journal of Physical Chemistry A, Vol. 119, Issue 1
  • DOI: 10.1021/jp510426m

Development and testing of a general amber force field
journal, January 2004

  • Wang, Junmei; Wolf, Romain M.; Caldwell, James W.
  • Journal of Computational Chemistry, Vol. 25, Issue 9
  • DOI: 10.1002/jcc.20035

Redesigning photosynthesis to sustainably meet global food and bioenergy demand
journal, June 2015

  • Ort, Donald R.; Merchant, Sabeeha S.; Alric, Jean
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 28
  • DOI: 10.1073/pnas.1424031112

Optical and optically detected magnetic resonance investigation on purple photosynthetic bacterial antenna complexes
journal, May 1995


The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopy
journal, January 2004


Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution
journal, March 2004

  • Liu, Zhenfeng; Yan, Hanchi; Wang, Kebin
  • Nature, Vol. 428, Issue 6980
  • DOI: 10.1038/nature02373

Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
journal, January 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 44
  • DOI: 10.1039/b810189b

Vibrational frequency scaling factors for correlation consistent basis sets and the methods CC2 and MP2 and their spin-scaled SCS and SOS variants
journal, November 2014

  • Friese, Daniel H.; Törk, Lisa; Hättig, Christof
  • The Journal of Chemical Physics, Vol. 141, Issue 19
  • DOI: 10.1063/1.4901725

Mimicry of antenna and photo-protective carotenoid functions by a synthetic carotenoporphyrin
journal, March 1981

  • Bensasson, René V.; Land, Edward J.; Moore, Ana L.
  • Nature, Vol. 290, Issue 5804
  • DOI: 10.1038/290329a0

Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants
journal, December 1995


Transient EPR and Absorption Studies of Carotenoid Triplet Formation in Purple Bacterial Antenna Complexes
journal, June 2001

  • Bittl, Robert; Schlodder, Eberhard; Geisenheimer, Irene
  • The Journal of Physical Chemistry B, Vol. 105, Issue 23
  • DOI: 10.1021/jp0033014

The fragment spin difference scheme for triplet-triplet energy transfer coupling
journal, August 2010

  • You, Zhi-Qiang; Hsu, Chao-Ping
  • The Journal of Chemical Physics, Vol. 133, Issue 7
  • DOI: 10.1063/1.3467882

Charge separation and energy transfer in carotenopyropheophorbide-quinone triads
journal, August 1986

  • Liddell, Paul A.; Barrett, Donna.; Makings, Lewis R.
  • Journal of the American Chemical Society, Vol. 108, Issue 17
  • DOI: 10.1021/ja00277a053

Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria
journal, October 1976

  • Monger, Teresa G.; Cogdell, Richard J.; Parson, William W.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 449, Issue 1
  • DOI: 10.1016/0005-2728(76)90013-X

Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM
journal, May 2006

  • Vreven, Thom; Byun, K. Suzie; Komáromi, István
  • Journal of Chemical Theory and Computation, Vol. 2, Issue 3
  • DOI: 10.1021/ct050289g

Triplet-triplet energy transfer in B800–850 light-harvesting complexes of photosynthetic bacteria and synthetic carotenoporphyrin molecules investigated by electron spin resonance
journal, July 1987

  • Frank, Harry A.; Chadwick, Barry W.; Jin Oh, Jung
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 892, Issue 3
  • DOI: 10.1016/0005-2728(87)90229-5

Carotenoid triplet detection by time-resolved EPR spectroscopy in carotenopyropheophorbide dyads
journal, May 1997

  • Carbonera, Donatella; di Valentin, Marilena; Corvaja, Carlo
  • Journal of Photochemistry and Photobiology A: Chemistry, Vol. 105, Issue 2-3
  • DOI: 10.1016/S1010-6030(96)04571-6

Energy Transfer from Carotenoid Polyenes to Porphyrins: a Light-Harvesting Antenna
journal, November 1980


Molecular Adaptation of Photoprotection: Triplet States in Light-Harvesting Proteins
journal, August 2011


Light Absorption and Energy Transfer in Polyene-Porphyrin Esters
journal, August 1980


EasySpin, a comprehensive software package for spectral simulation and analysis in EPR
journal, January 2006


Resonance Raman Spectra and Electronic Transitions in Carotenoids: A Density Functional Theory Study
journal, February 2014

  • Macernis, Mindaugas; Sulskus, Juozas; Malickaja, Svetlana
  • The Journal of Physical Chemistry A, Vol. 118, Issue 10
  • DOI: 10.1021/jp406449c

Photodriven charge separation in a carotenoporphyrin–quinone triad
journal, February 1984

  • Moore, Thomas A.; Gust, Devens; Mathis, Paul
  • Nature, Vol. 307, Issue 5952
  • DOI: 10.1038/307630a0

Photoisomerization of polyenes: Potential energy surfaces and normal mode analysis
journal, August 1980

  • Ohmine, Iwao; Morokuma, Keiji
  • The Journal of Chemical Physics, Vol. 73, Issue 4
  • DOI: 10.1063/1.440326

Global and target analysis of time-resolved spectra
journal, July 2004

  • van Stokkum, Ivo H. M.; Larsen, Delmar S.; van Grondelle, Rienk
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1657, Issue 2-3
  • DOI: 10.1016/j.bbabio.2004.04.011

A Protein Dynamics Study of Photosystem II: The Effects of Protein Conformation on Reaction Center Function
journal, May 2006