skip to main content

DOE PAGESDOE PAGES

Title: An in situ USAXS–SAXS–WAXS study of precipitate size distribution evolution in a model Ni-based alloy

Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.
Authors:
 [1] ;  [2] ;  [2] ;  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
AC05-00OR22725; AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Journal of Applied Crystallography (Online)
Additional Journal Information:
Journal Name: Journal of Applied Crystallography (Online); Journal Volume: 50; Journal Issue: 3; Journal ID: ISSN 1600-5767
Publisher:
International Union of Crystallography
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ultra-small-angle X-ray scattering; small-angle X-ray scattering; wide-angle X-ray scattering; USAXS–SAXS–WAXS; precipitation hardening; Bayesian inverse transformation
OSTI Identifier:
1366390