DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: West Antarctic Ice Sheet Cloud Cover and Surface Radiation Budget from NASA A-Train Satellites

Abstract

Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and ice cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m-2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m-2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems aremore » strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

Authors:
 [1];  [1];  [2];  [3]
  1. Scripps Institution of Oceanography, La Jolla, California
  2. Brookhaven National Laboratory, Upton, New York
  3. NASA Langley Research Center, Hampton, Virginia
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1369498
Alternate Identifier(s):
OSTI ID: 1366350
Report Number(s):
BNL-113984-2017-JA
Journal ID: ISSN 0894-8755
Grant/Contract Number:  
SC0012704
Resource Type:
Published Article
Journal Name:
Journal of Climate
Additional Journal Information:
Journal Name: Journal of Climate Journal Volume: 30 Journal Issue: 16; Journal ID: ISSN 0894-8755
Publisher:
American Meteorological Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Scott, Ryan C., Lubin, Dan, Vogelmann, Andrew M., and Kato, Seiji. West Antarctic Ice Sheet Cloud Cover and Surface Radiation Budget from NASA A-Train Satellites. United States: N. p., 2017. Web. doi:10.1175/JCLI-D-16-0644.1.
Scott, Ryan C., Lubin, Dan, Vogelmann, Andrew M., & Kato, Seiji. West Antarctic Ice Sheet Cloud Cover and Surface Radiation Budget from NASA A-Train Satellites. United States. https://doi.org/10.1175/JCLI-D-16-0644.1
Scott, Ryan C., Lubin, Dan, Vogelmann, Andrew M., and Kato, Seiji. Wed . "West Antarctic Ice Sheet Cloud Cover and Surface Radiation Budget from NASA A-Train Satellites". United States. https://doi.org/10.1175/JCLI-D-16-0644.1.
@article{osti_1369498,
title = {West Antarctic Ice Sheet Cloud Cover and Surface Radiation Budget from NASA A-Train Satellites},
author = {Scott, Ryan C. and Lubin, Dan and Vogelmann, Andrew M. and Kato, Seiji},
abstractNote = {Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and ice cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m-2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m-2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.},
doi = {10.1175/JCLI-D-16-0644.1},
journal = {Journal of Climate},
number = 16,
volume = 30,
place = {United States},
year = {Wed Apr 26 00:00:00 EDT 2017},
month = {Wed Apr 26 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1175/JCLI-D-16-0644.1

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles
journal, January 2010

  • Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD012277

Temperature-driven global sea-level variability in the Common Era
journal, February 2016

  • Kopp, Robert E.; Kemp, Andrew C.; Bittermann, Klaus
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1517056113

Cloud Radiative Forcing at Summit, Greenland
journal, August 2015

  • Miller, Nathaniel B.; Shupe, Matthew D.; Cox, Christopher J.
  • Journal of Climate, Vol. 28, Issue 15
  • DOI: 10.1175/JCLI-D-15-0076.1

Climate of West Antarctica and Influence of Marine Air Intrusions
journal, January 2011


Volume loss from Antarctic ice shelves is accelerating
journal, March 2015


Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment
journal, January 1989


Clouds at Arctic Atmospheric Observatories. Part II: Thermodynamic Phase Characteristics
journal, March 2011

  • Shupe, Matthew D.
  • Journal of Applied Meteorology and Climatology, Vol. 50, Issue 3
  • DOI: 10.1175/2010JAMC2468.1

Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica
journal, January 2015


Twentieth century increase in snowfall in coastal West Antarctica: INCREASED SNOWFALL IN WEST ANTARCTICA
journal, November 2015

  • Thomas, E. R.; Hosking, J. S.; Tuckwell, R. R.
  • Geophysical Research Letters, Vol. 42, Issue 21
  • DOI: 10.1002/2015GL065750

New Reconstruction of Antarctic Near-Surface Temperatures: Multidecadal Trends and Reliability of Global Reanalyses
journal, November 2014


Ubiquitous low‐level liquid‐containing Arctic clouds: New observations and climate model constraints from CALIPSO‐GOCCP
journal, October 2012

  • Cesana, G.; Kay, J. E.; Chepfer, H.
  • Geophysical Research Letters, Vol. 39, Issue 20
  • DOI: 10.1029/2012GL053385

Uncertainty Estimate of Surface Irradiances Computed with MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties
journal, February 2012


Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years
journal, April 2013

  • Steig, Eric J.; Ding, Qinghua; White, James W. C.
  • Nature Geoscience, Vol. 6, Issue 5
  • DOI: 10.1038/ngeo1778

Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow
journal, June 2002


West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster
journal, January 1978


Antarctic atmospheric temperature trend patterns from satellite observations
journal, January 2007

  • Johanson, Celeste M.; Fu, Qiang
  • Geophysical Research Letters, Vol. 34, Issue 12
  • DOI: 10.1029/2006GL029108

Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years: WDC TEMPERATURE AND ACCUMULATION
journal, April 2016

  • Fudge, T. J.; Markle, Bradley R.; Cuffey, Kurt M.
  • Geophysical Research Letters, Vol. 43, Issue 8
  • DOI: 10.1002/2016GL068356

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula
journal, January 2000


Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica
journal, January 2004


A 15-year West Antarctic climatology from six automatic weather station temperature and pressure records: WEST ANTARCTIC AWS CLIMATOLOGY
journal, February 2004

  • Reusch, David B.; Alley, Richard B.
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D4
  • DOI: 10.1029/2003JD004178

A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements
journal, January 2010

  • Zhang, Damao; Wang, Zhien; Liu, Dong
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD012143

Strong surface melting preceded collapse of Antarctic Peninsula ice shelf: MELTING ON ANTARCTIC ICE SHELVES
journal, June 2005


Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage
journal, April 2008


Ice cores record significant 1940s Antarctic warmth related to tropical climate variability
journal, August 2008

  • Schneider, D. P.; Steig, E. J.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 34
  • DOI: 10.1073/pnas.0803627105

Consistent evidence of increasing Antarctic accumulation with warming
journal, March 2015

  • Frieler, Katja; Clark, Peter U.; He, Feng
  • Nature Climate Change, Vol. 5, Issue 4
  • DOI: 10.1038/nclimate2574

The surface windfield over the Antarctic ice sheets
journal, July 1987

  • Parish, Thomas R.; Bromwich, David H.
  • Nature, Vol. 328, Issue 6125
  • DOI: 10.1038/328051a0

Unique manifestations of mixed‐phase cloud microphysics over Ross Island and the Ross Ice Shelf, Antarctica
journal, March 2016

  • Scott, Ryan C.; Lubin, Dan
  • Geophysical Research Letters, Vol. 43, Issue 6
  • DOI: 10.1002/2015GL067246

Rapid recent warming on Rutford Ice Stream, West Antarctica, from borehole thermometry: RECENT WARMING ON RUTFORD ICE STREAM
journal, January 2009

  • Barrett, B. E.; Nicholls, K. W.; Murray, T.
  • Geophysical Research Letters, Vol. 36, Issue 2
  • DOI: 10.1029/2008GL036369

Contribution of Antarctica to past and future sea-level rise
journal, March 2016


Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties
journal, January 2011

  • Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny
  • Journal of Geophysical Research, Vol. 116, Issue D19
  • DOI: 10.1029/2011JD016050

THE CLOUDSAT MISSION AND THE A-TRAIN: A New Dimension of Space-Based Observations of Clouds and Precipitation
journal, December 2002

  • Stephens, Graeme L.; Vane, Deborah G.; Boain, Ronald J.
  • Bulletin of the American Meteorological Society, Vol. 83, Issue 12
  • DOI: 10.1175/BAMS-83-12-1771

July 2012 Greenland melt extent enhanced by low-level liquid clouds
journal, April 2013

  • Bennartz, R.; Shupe, M. D.; Turner, D. D.
  • Nature, Vol. 496, Issue 7443
  • DOI: 10.1038/nature12002

Warm-air advection, air mass transformation and fog causes rapid ice melt: WARM-AIR ADVECTION, FOG AND ICE MELT
journal, July 2015

  • Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.
  • Geophysical Research Letters, Vol. 42, Issue 13
  • DOI: 10.1002/2015GL064373

Mass gains of the Antarctic ice sheet exceed losses
journal, January 2015

  • Zwally, H. Jay; Li, Jun; Robbins, John W.
  • Journal of Glaciology, Vol. 61, Issue 230
  • DOI: 10.3189/2015JoG15J071

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

The Amundsen Sea Low: Variability, Change, and Impact on Antarctic Climate
journal, January 2016

  • Raphael, M. N.; Marshall, G. J.; Turner, J.
  • Bulletin of the American Meteorological Society, Vol. 97, Issue 1
  • DOI: 10.1175/BAMS-D-14-00018.1

Spectral and Broadband Longwave Downwelling Radiative Fluxes, Cloud Radiative Forcing, and Fractional Cloud Cover over the South Pole
journal, October 2005

  • Town, Michael S.; Walden, Von P.; Warren, Stephen G.
  • Journal of Climate, Vol. 18, Issue 20
  • DOI: 10.1175/JCLI3525.1

The extreme melt across the Greenland ice sheet in 2012
journal, October 2012

  • Nghiem, S. V.; Hall, D. K.; Mote, T. L.
  • Geophysical Research Letters, Vol. 39, Issue 20
  • DOI: 10.1029/2012GL053611

An Analysis of Low-Level Jets in the Greater Ross Ice Shelf Region Based on Numerical Simulations
journal, November 2008

  • Seefeldt, Mark W.; Cassano, John J.
  • Monthly Weather Review, Vol. 136, Issue 11
  • DOI: 10.1175/2008MWR2455.1

The Three-Dimensional Distribution of Clouds over the Southern Hemisphere High Latitudes
journal, November 2011

  • Verlinden, Kathryn L.; Thompson, David W. J.; Stephens, Graeme L.
  • Journal of Climate, Vol. 24, Issue 22
  • DOI: 10.1175/2011JCLI3922.1

Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century
journal, April 2013

  • Abram, Nerilie J.; Mulvaney, Robert; Wolff, Eric W.
  • Nature Geoscience, Vol. 6, Issue 5
  • DOI: 10.1038/ngeo1787

Persistence of orographic mixed-phase clouds: OROGRAPHIC MIXED-PHASE CLOUDS
journal, October 2016

  • Lohmann, U.; Henneberger, J.; Henneberg, O.
  • Geophysical Research Letters, Vol. 43, Issue 19
  • DOI: 10.1002/2016GL071036

Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms
journal, November 2009

  • Winker, David M.; Vaughan, Mark A.; Omar, Ali
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 11
  • DOI: 10.1175/2009JTECHA1281.1

The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation
journal, August 2015

  • Illingworth, A. J.; Barker, H. W.; Beljaars, A.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 8
  • DOI: 10.1175/BAMS-D-12-00227.1

An assessment and interpretation of the observed warming of West Antarctica in the austral spring
journal, January 2011


Variability in AIRS-retrieved cloud amount and thermodynamic phase over west versus east Antarctica influenced by the SAM: AIRS Antarctic Cloud Properties
journal, February 2015

  • Lubin, Dan; Kahn, Brian H.; Lazzara, Matthew A.
  • Geophysical Research Letters, Vol. 42, Issue 4
  • DOI: 10.1002/2014GL062285

Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements
journal, January 2005


Impact of Clouds on Surface Radiative Fluxes and Snowmelt in the Arctic and Subarctic
journal, September 1996


Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide: WAIS DIVIDE TEMPERATURE
journal, May 2012

  • Orsi, Anais J.; Cornuelle, Bruce D.; Severinghaus, Jeffrey P.
  • Geophysical Research Letters, Vol. 39, Issue 9
  • DOI: 10.1029/2012GL051260

An improved mass budget for the Greenland ice sheet
journal, February 2014

  • Enderlin, Ellyn M.; Howat, Ian M.; Jeong, Seongsu
  • Geophysical Research Letters, Vol. 41, Issue 3
  • DOI: 10.1002/2013GL059010

Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011
journal, May 2014

  • Rignot, E.; Mouginot, J.; Morlighem, M.
  • Geophysical Research Letters, Vol. 41, Issue 10
  • DOI: 10.1002/2014GL060140

Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research
journal, October 1998


Surface energy budget over the South Pole and turbulent heat fluxes as a function of an empirical bulk Richardson number
journal, January 2009

  • Town, Michael S.; Walden, Von P.
  • Journal of Geophysical Research, Vol. 114, Issue D22
  • DOI: 10.1029/2009JD011888

Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios
journal, October 2015

  • Trusel, Luke D.; Frey, Karen E.; Das, Sarah B.
  • Nature Geoscience, Vol. 8, Issue 12
  • DOI: 10.1038/ngeo2563

Central West Antarctica among the most rapidly warming regions on Earth
journal, December 2012

  • Bromwich, David H.; Nicolas, Julien P.; Monaghan, Andrew J.
  • Nature Geoscience, Vol. 6, Issue 2
  • DOI: 10.1038/ngeo1671

High and Dry: New Observations of Tropospheric and Cloud Properties above the Greenland Ice Sheet
journal, February 2013

  • Shupe, Matthew D.; Turner, David D.; Walden, Von P.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 2
  • DOI: 10.1175/BAMS-D-11-00249.1

Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: single-layer cloud
journal, April 2009

  • Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh
  • Quarterly Journal of the Royal Meteorological Society, Vol. 135, Issue 641
  • DOI: 10.1002/qj.416

A Reconciled Estimate of Ice-Sheet Mass Balance
journal, November 2012


Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths
journal, January 1994

  • Grenfell, Thomas C.; Warren, Stephen G.; Mullen, Peter C.
  • Journal of Geophysical Research, Vol. 99, Issue D9
  • DOI: 10.1029/94JD01484

Tropospheric clouds in Antarctica
journal, January 2012

  • Bromwich, David H.; Nicolas, Julien P.; Hines, Keith M.
  • Reviews of Geophysics, Vol. 50, Issue 1
  • DOI: 10.1029/2011RG000363

Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model
journal, February 2016


On the recent contribution of the Greenland ice sheet to sea level change
journal, January 2016

  • van den Broeke, Michiel R.; Enderlin, Ellyn M.; Howat, Ian M.
  • The Cryosphere, Vol. 10, Issue 5
  • DOI: 10.5194/tc-10-1933-2016

Mixed-phase cloud radiative properties over Ross Island, Antarctica: The influence of various synoptic-scale atmospheric circulation regimes
journal, June 2014

  • Scott, Ryan C.; Lubin, Dan
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 11
  • DOI: 10.1002/2013JD021132

Persistent surface snowmelt over Antarctica (1987–2006) from 19.35 GHz brightness temperatures
journal, January 2007

  • Tedesco, M.; Abdalati, W.; Zwally, H. J.
  • Geophysical Research Letters, Vol. 34, Issue 18
  • DOI: 10.1029/2007GL031199

Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf
journal, January 2004


Antarctica cloud cover for October 2003 from GLAS satellite lidar profiling: ANTARCTICA CLOUDS FROM SATELLITE LIDAR
journal, September 2005

  • Spinhirne, J. D.; Palm, S. P.; Hart, W. D.
  • Geophysical Research Letters, Vol. 32, Issue 22
  • DOI: 10.1029/2005GL023782

Impact of Antarctic mixed-phase clouds on climate
journal, December 2014

  • Lawson, R. Paul; Gettelman, Andrew
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 51
  • DOI: 10.1073/pnas.1418197111

Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends
journal, November 2013


Clouds enhance Greenland ice sheet meltwater runoff
journal, January 2016

  • Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10266

Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica
journal, May 2014


January 2016 extensive summer melt in West Antarctica favoured by strong El Niño
journal, June 2017

  • Nicolas, Julien P.; Vogelmann, Andrew M.; Scott, Ryan C.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15799

A 308 year record of climate variability in West Antarctica: WEST ANTARCTIC CLIMATE VARIABILITY
journal, October 2013

  • Thomas, Elizabeth R.; Bracegirdle, Thomas J.; Turner, John
  • Geophysical Research Letters, Vol. 40, Issue 20
  • DOI: 10.1002/2013GL057782

Deformation, warming and softening of Greenland’s ice by refreezing meltwater
journal, June 2014

  • Bell, Robin E.; Tinto, Kirsteen; Das, Indrani
  • Nature Geoscience, Vol. 7, Issue 7
  • DOI: 10.1038/ngeo2179

Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica
journal, January 2008

  • Das, Sarah B.; Alley, Richard B.
  • Journal of Geophysical Research, Vol. 113, Issue D2
  • DOI: 10.1029/2007JD008790

An annual cycle of Arctic surface cloud forcing at SHEBA
journal, January 2002


Numerical simulation of extreme snowmelt observed at the SIGMA-A site, northwest Greenland, during summer 2012
journal, January 2015


Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models: Surface energy budget of Larsen C
journal, February 2015

  • King, J. C.; Gadian, A.; Kirchgaessner, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 4
  • DOI: 10.1002/2014JD022604