skip to main content


Title: Revealing mechanism responsible for structural reversibility of single-crystal VO 2 nanorods upon lithiation/delithiation

A pure phase of VO 2(B) nanorods have been synthesized through an energy-efficient microwave hydrothermal reaction and used as cathode materials of lithium ion batteries, which exhibit promising specific capacity (e.g., 130 mA h g -1 even after 100 charge/discharge cycles) and rate capacity (e.g., ~130 mA h g -1 at a high current of 400 mA g -1). The excellent cyclability originates from the structural reversibility of VO 2(B) upon lithiation/delithiation that is confirmed by the in situ high-energy synchrotron X-ray diffraction (HEXRD) and in situ x-ray adsorption near-edge spectroscopy (XANES) of the VO 2 nanorods in operating battery cells. As a result, the real-time results reveal that discharge forces lithium ions to insert firstly into the tunnels with the largest size along b direction followed by the second largest tunnels along c direction, which is completely reversible in the charge process.
 [1] ;  [1] ;  [2] ;  [3] ;  [3] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [3]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States); Shandong Univ., Jinan (China)
  3. Temple Univ., Philadelphia, PA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 36; Journal Issue: C; Journal ID: ISSN 2211-2855
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; vanadium dioxide; microwave synthesis; structural reversibility; synchrotron characterization
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1416779