skip to main content

DOE PAGESDOE PAGES

Title: Molecular-level simulations of turbulence and its decay

Here, we provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov –5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can be used to investigate turbulent flows quantitatively.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Imperial College, London (United Kingdom)
Publication Date:
Report Number(s):
SAND-2017-1611J
Journal ID: ISSN 0031-9007; PRLTAO; 654304
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 118; Journal Issue: 6; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS
OSTI Identifier:
1365812
Alternate Identifier(s):
OSTI ID: 1343352