skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrical resistance of single-crystal magnetite (Fe 3 O 4 ) under quasi-hydrostatic pressures up to 100 GPa

Abstract

We measured the pressure dependence of electrical resistance of single-crystal magnetite (Fe3O4) under quasi-hydrostatic conditions to 100 GPa using low-temperature, megabar diamond-anvil cell techniques in order to gain insight into the anomalous behavior of this material that has been reported over the years in different high-pressure experiments. The measurements under nearly hydrostatic pressure conditions allowed us to detect the clear Verwey transition and the high-pressure structural phase. Furthermore, the appearance of a metallic ground state after the suppression of the Verwey transition around 20 GPa and the concomitant enhancement of electrical resistance caused by the structural transformation to the high-pressure phase form reentrant semiconducting-metallic-semiconducting behavior, though the appearance of the metallic phase is highly sensitive to stress conditions and details of the measurement technique.

Authors:
 [1]; ORCiD logo [2];  [3];  [4];  [1]
  1. Carnegie Inst. of Washington, Washington, DC (United States). Geophysical Lab.
  2. Univ. of North Florida, Jacksonville, FL (United States). Dept. of Physics
  3. Ecole Polytechnique Federale Lausanne (Switzlerland)
  4. Carnegie Inst. of Washington, Washington, DC (United States). Geophysical Lab.; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Carnegie Institution for Science, Washington, DC (United States); Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research in Extreme Environments (EFree)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1364599
Alternate Identifier(s):
OSTI ID: 1246184
Grant/Contract Number:  
NA0002006; SC-0001057; FG02-02ER45955; FG02-99ER45775; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 119; Journal Issue: 13; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Muramatsu, Takaki, Gasparov, Lev V., Berger, Helmuth, Hemley, Russell J., and Struzhkin, Viktor V. Electrical resistance of single-crystal magnetite (Fe 3 O 4 ) under quasi-hydrostatic pressures up to 100 GPa. United States: N. p., 2016. Web. doi:10.1063/1.4945388.
Muramatsu, Takaki, Gasparov, Lev V., Berger, Helmuth, Hemley, Russell J., & Struzhkin, Viktor V. Electrical resistance of single-crystal magnetite (Fe 3 O 4 ) under quasi-hydrostatic pressures up to 100 GPa. United States. doi:10.1063/1.4945388.
Muramatsu, Takaki, Gasparov, Lev V., Berger, Helmuth, Hemley, Russell J., and Struzhkin, Viktor V. Thu . "Electrical resistance of single-crystal magnetite (Fe 3 O 4 ) under quasi-hydrostatic pressures up to 100 GPa". United States. doi:10.1063/1.4945388. https://www.osti.gov/servlets/purl/1364599.
@article{osti_1364599,
title = {Electrical resistance of single-crystal magnetite (Fe 3 O 4 ) under quasi-hydrostatic pressures up to 100 GPa},
author = {Muramatsu, Takaki and Gasparov, Lev V. and Berger, Helmuth and Hemley, Russell J. and Struzhkin, Viktor V.},
abstractNote = {We measured the pressure dependence of electrical resistance of single-crystal magnetite (Fe3O4) under quasi-hydrostatic conditions to 100 GPa using low-temperature, megabar diamond-anvil cell techniques in order to gain insight into the anomalous behavior of this material that has been reported over the years in different high-pressure experiments. The measurements under nearly hydrostatic pressure conditions allowed us to detect the clear Verwey transition and the high-pressure structural phase. Furthermore, the appearance of a metallic ground state after the suppression of the Verwey transition around 20 GPa and the concomitant enhancement of electrical resistance caused by the structural transformation to the high-pressure phase form reentrant semiconducting-metallic-semiconducting behavior, though the appearance of the metallic phase is highly sensitive to stress conditions and details of the measurement technique.},
doi = {10.1063/1.4945388},
journal = {Journal of Applied Physics},
number = 13,
volume = 119,
place = {United States},
year = {2016},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures
journal, August 1939


Short-Range Correlations in Magnetite above the Verwey Temperature
journal, March 2014


Hyperfine field and electronic structure of magnetite below the Verwey transition
journal, March 2015


Effect of Pressure on the Metal-Nonmetal Transition and Conductivity of Fe 3 O 4
journal, September 1968


Charge order and three-site distortions in the Verwey structure of magnetite
journal, December 2011

  • Senn, Mark S.; Wright, Jon P.; Attfield, J. Paul
  • Nature, Vol. 481, Issue 7380
  • DOI: 10.1038/nature10704

Charge localization in the Verwey structure of magnetite
journal, July 2015


Analysis of charge and orbital order in Fe 3 O 4 by Fe L 2 , 3 resonant x-ray diffraction
journal, November 2013


Electric field control of the Verwey transition and induced magnetoelectric effect in magnetite
journal, August 2012


Orbital degrees of freedom as origin of magnetoelectric coupling in magnetite
journal, February 2012


Spin state of iron in Fe 3 O 4 magnetite and h -Fe 3 O 4
journal, April 2013


Anharmonicity due to Electron-Phonon Coupling in Magnetite
journal, May 2013


Pressure-Induced Crystal Structure and Spin-State Transitions in Magnetite (Fe 3 O 4 )
journal, August 2012

  • Ju, Sheng; Cai, Tian-Yi; Lu, Hai-Shuang
  • Journal of the American Chemical Society, Vol. 134, Issue 33
  • DOI: 10.1021/ja305167h

Abnormal Elastic and Vibrational Behaviors of Magnetite at High Pressures
journal, September 2014

  • Lin, Jung-Fu; Wu, Junjie; Zhu, Jie
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06282

Metallization of magnetite at high pressures
journal, March 2002


Pressure-induced coordination crossover in magnetite, a high pressure Mössbauer study
journal, August 2004

  • Pasternak, M. P.; Xu, W. M.; Rozenberg, G. Kh.
  • Journal of Physics and Chemistry of Solids, Vol. 65, Issue 8-9
  • DOI: 10.1016/j.jpcs.2003.12.013

High-pressure study of Fe 3 O 4 through the Verwey transition
journal, November 1994


Origin of the Verwey Transition in Magnetite
journal, February 2006


Pressure Dependence of the Verwey Temperature of Fe 3- y O 4 Obtained by Magnetic Permeability Measurements
journal, December 1990

  • Tamura, Syuzo
  • Journal of the Physical Society of Japan, Vol. 59, Issue 12
  • DOI: 10.1143/JPSJ.59.4462

Pressure Effects on Magnetic Susceptibility in Fe 3 O 4
journal, January 2007

  • Hosoya, Teppei; Takahasi, Hiroki; Yamada, Daikichi
  • Journal of the Physical Society of Japan, Vol. 76, Issue Suppl.A
  • DOI: 10.1143/JPSJS.76SA.108

Verwey transition in Fe 3 O 4 at high pressure: Quantum critical point at the onset of metallization
journal, September 2008


Metallization of magnetite (Fe3O4) under high pressure
journal, June 2001

  • Todo, S.; Takeshita, N.; Kanehara, T.
  • Journal of Applied Physics, Vol. 89, Issue 11
  • DOI: 10.1063/1.1359460

Raman study of the Verwey transition in magnetite at high-pressure and low-temperature: Effect of Al doping
journal, August 2012

  • Gasparov, L.; Shirshikova, Z.; Pekarek, T. M.
  • Journal of Applied Physics, Vol. 112, Issue 4
  • DOI: 10.1063/1.4747834

Magnetite: Raman study of the high-pressure and low-temperature effects
journal, May 2005

  • Gasparov, L. V.; Arenas, D.; Choi, K. -Y.
  • Journal of Applied Physics, Vol. 97, Issue 10
  • DOI: 10.1063/1.1854476

Pressure dependence of the Verwey transition in magnetite: An infrared spectroscopic point of view
journal, October 2012

  • Ebad-Allah, J.; Baldassarre, L.; Sing, M.
  • Journal of Applied Physics, Vol. 112, Issue 7
  • DOI: 10.1063/1.4758303

Isothermal compression of magnetite to 320 KB
journal, March 1974

  • Mao, Ho-Kwang; Takahashi, Taro; Bassett, William A.
  • Journal of Geophysical Research, Vol. 79, Issue 8
  • DOI: 10.1029/JB079i008p01165

The structure of the metallic high-pressure Fe 3 O 4 polymorph: experimental and theoretical study
journal, October 2003

  • Dubrovinsky, L. S.; Dubrovinskaia, N. A.; McCammon, C.
  • Journal of Physics: Condensed Matter, Vol. 15, Issue 45
  • DOI: 10.1088/0953-8984/15/45/009

Mössbauer and resistivity studies of the magnetic and electronic properties of the high-pressure phase of Fe 3 O 4
journal, November 2004


Nature of the Verwey transition in magnetite ( Fe 3 O 4 ) to pressures of 16 GPa
journal, March 1996

  • Rozenberg, Gregory Kh.; Hearne, Giovanni R.; Pasternak, Moshe P.
  • Physical Review B, Vol. 53, Issue 10
  • DOI: 10.1103/PhysRevB.53.6482

Pressure effect on the anomalous electrical conductivity of magnetite
journal, May 1979


Solidification of High-Pressure Medium Daphne 7373
journal, June 2007

  • Yokogawa, Keiichi; Murata, Keizo; Yoshino, Harukazu
  • Japanese Journal of Applied Physics, Vol. 46, Issue 6A
  • DOI: 10.1143/JJAP.46.3636

Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
journal, January 1986

  • Mao, H. K.; Xu, J.; Bell, P. M.
  • Journal of Geophysical Research, Vol. 91, Issue B5, p. 4673-4676
  • DOI: 10.1029/JB091iB05p04673

Pressure calibration of diamond anvil Raman gauge to 410 GPa
journal, March 2010


Polaron physics and crossover transition in magnetite probed by pressure-dependent infrared spectroscopy
journal, December 2012


High-pressure resistivity technique for quasi-hydrostatic compression experiments
journal, June 2013

  • Rotundu, C. R.; Ćuk, T.; Greene, R. L.
  • Review of Scientific Instruments, Vol. 84, Issue 6
  • DOI: 10.1063/1.4809025