skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Poloidal and toroidal plasmons and fields of multilayer nanorings

Abstract

Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes inmore » response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.« less

Authors:
 [1];  [2];  [1];  [3];  [2]
  1. Univ. of South Florida, Tampa, FL (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1362224
Alternate Identifier(s):
OSTI ID: 1351929
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 16; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Garapati, K. V., Salhi, M., Kouchekian, S., Siopsis, G., and Passian, A. Poloidal and toroidal plasmons and fields of multilayer nanorings. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.95.165422.
Garapati, K. V., Salhi, M., Kouchekian, S., Siopsis, G., & Passian, A. Poloidal and toroidal plasmons and fields of multilayer nanorings. United States. doi:10.1103/PhysRevB.95.165422.
Garapati, K. V., Salhi, M., Kouchekian, S., Siopsis, G., and Passian, A. Mon . "Poloidal and toroidal plasmons and fields of multilayer nanorings". United States. doi:10.1103/PhysRevB.95.165422. https://www.osti.gov/servlets/purl/1362224.
@article{osti_1362224,
title = {Poloidal and toroidal plasmons and fields of multilayer nanorings},
author = {Garapati, K. V. and Salhi, M. and Kouchekian, S. and Siopsis, G. and Passian, A.},
abstractNote = {Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.},
doi = {10.1103/PhysRevB.95.165422},
journal = {Physical Review B},
number = 16,
volume = 95,
place = {United States},
year = {2017},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Introductory Lecture : Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications
journal, January 2006

  • Dieringer, Jon A.; McFarland, Adam D.; Shah, Nilam C.
  • Faraday Discuss., Vol. 132
  • DOI: 10.1039/B513431P

Dominant and Recessive Solutions of Symmetric Three Term Recurrences
journal, January 1994


Optical toroidal dipolar response by an asymmetric double-bar metamaterial
journal, October 2012

  • Dong, Zheng-Gao; Zhu, J.; Rho, Junsuk
  • Applied Physics Letters, Vol. 101, Issue 14
  • DOI: 10.1063/1.4757613

Optical Conformal Mapping
journal, June 2006


Computing Toroidal Functions for Wide Ranges of the Parameters
journal, June 2000

  • Gil, Amparo; Segura, Javier; Temme, Nico M.
  • Journal of Computational Physics, Vol. 161, Issue 1
  • DOI: 10.1006/jcph.2000.6498

Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation
journal, June 2015

  • Bao, Yanjun; Zhu, Xing; Fang, Zheyu
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11793

Mechanical properties of connected carbon nanorings via molecular dynamics simulation
journal, August 2005


Plasmon excitations in carbon nanotubes
journal, October 1999

  • Stöckli, Thomas; Wang, Zhong Lin; Bonard, Jean-Marc
  • Philosophical Magazine B, Vol. 79, Issue 10
  • DOI: 10.1080/13642819908218320

Toroidal metamaterial
journal, September 2007


Invisible waveguides on metal plates for plasmonic analogs of electromagnetic wormholes
journal, October 2014


Electrical polarizability of differently shaped dielectric objects in the presence of localized interfacial charge distribution: a unifying scenario
journal, January 2013


Dispersion relations of toroidal plasma surface waves in quasi-electrostatic state
journal, April 1991

  • Tsuchimoto, M.; Honma, T.; Miya, K.
  • IEEE Transactions on Plasma Science, Vol. 19, Issue 2
  • DOI: 10.1109/27.106842

Solution of Laplace's Equation in Toroidal Coordinates Deduced by a Method of Imaginary Inversion
journal, January 1898

  • Safford, F. H.
  • The Annals of Mathematics, Vol. 12, Issue 1/6
  • DOI: 10.2307/1967522

Invisibility cloaking in light-scattering media: Invisibility cloaking in light-scattering media
journal, April 2016

  • Schittny, Robert; Niemeyer, Andreas; Mayer, Frederik
  • Laser & Photonics Reviews, Vol. 10, Issue 3
  • DOI: 10.1002/lpor.201500284

Berry phases and zero-modes in toroidal topological insulator
journal, June 2016

  • Fonseca, Jakson M.; Carvalho-Santos, Vagson L.; Moura-Melo, Winder A.
  • The European Physical Journal B, Vol. 89, Issue 6
  • DOI: 10.1140/epjb/e2016-70076-8

Optical Properties of Gold Nanorings
journal, February 2003


Scaling in complex systems: analytical theory of charged pores
journal, November 2005


Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition
journal, November 2002


Metamaterials beyond electromagnetism
journal, November 2013


Controlling Electromagnetic Fields
journal, June 2006

  • Pendry, J. B.; Schurig, D.; Smith, D. R.
  • Science, Vol. 312, Issue 5781, p. 1780-1782
  • DOI: 10.1126/science.1125907

Negative refraction
journal, May 2004


Toroidal Micelles of Polystyrene-block-Poly(acrylic acid)
journal, August 2011


The Dielectric Ring in a Uniform, Axial, Electrostatic Field
journal, September 1972

  • Love, J. D.
  • Journal of Mathematical Physics, Vol. 13, Issue 9
  • DOI: 10.1063/1.1666135

Computational Aspects of Three-Term Recurrence Relations
journal, January 1967


Janus particles for biological imaging and sensing
journal, January 2016

  • Yi, Yi; Sanchez, Lucero; Gao, Yuan
  • The Analyst, Vol. 141, Issue 12
  • DOI: 10.1039/C6AN00325G

Plasma equilibrium in a Tokamak
journal, December 1971


Quasi-static modes of oscillation of a cold toroidal plasma
journal, August 1975


4-D dielectrophoretic handling of Janus particles in a microfluidic chip
journal, May 2010


Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts
journal, February 2004

  • Kong, Xiang Yang; Ding, Yong; Yang, Rusen
  • Science, Vol. 303, Issue 5662, p. 1348-1351
  • DOI: 10.1126/science.1092356

Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy
journal, July 2003

  • Haynes, Christy L.; Van Duyne, Richard P.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 30
  • DOI: 10.1021/jp027749b

Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals
journal, November 1999

  • Michaels, Amy M.; Nirmal, M.; Brus, L. E.
  • Journal of the American Chemical Society, Vol. 121, Issue 43
  • DOI: 10.1021/ja992128q

Evaluation of toroidal harmonics
journal, January 2000


High-frequency surface waves on a toroidal isotropic plasma
journal, December 1993


Solutions of Poisson's equation in channel-like geometries
journal, December 1998


Alternative separation of Laplace's equation in toroidal coordinates and its application to electrostatics
journal, September 2006


DTORH3 2.0: A new version of a computer program for the evaluation of toroidal harmonics
journal, September 2001


Toroidal dipole response in a multifold double-ring metamaterial
journal, January 2012


Eigenmodes for electromagnetic waves propagating in a toroidal cavity
journal, January 1990

  • Janaki, M. S.; Dasgupta, B.
  • IEEE Transactions on Plasma Science, Vol. 18, Issue 1
  • DOI: 10.1109/27.45509

Tuning the optical response of a dimer nanoantenna using plasmonic nanoring loads
journal, May 2015

  • Panaretos, Anastasios H.; Yuwen, Yu A.; Werner, Douglas H.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09813

Electrostatic Excitation of a Conducting Toroid: Exact Solution and Thin-Wire Approximation
journal, January 2005


Sum rules for surface plasmon frequencies
journal, September 1996


Fabrication of Monodisperse Toroidal Particles by Polymer Solidification in Microfluidics
journal, March 2009


Analytical Solutions of Poisson's Equation for Realistic Geometrical Shapes of Membrane Ion Channels
journal, January 1998


Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators
journal, June 2016


Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering
journal, November 1999


An Optical “Janus” Device for Integrated Photonics
journal, May 2010

  • Zentgraf, Thomas; Valentine, Jason; Tapia, Nicholas
  • Advanced Materials, Vol. 22, Issue 23
  • DOI: 10.1002/adma.200904139

Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells
journal, May 2005


Optical Antennas
journal, January 2009

  • Bharadwaj, Palash; Deutsch, Bradley; Novotny, Lukas
  • Advances in Optics and Photonics, Vol. 1, Issue 3
  • DOI: 10.1364/AOP.1.000438

Localized surface plasmons on a torus in the nonretarded approximation
journal, October 2005


Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays
journal, July 2005


Curvature effects in surface plasmon dispersion and coupling
journal, March 2005


A Hybridization Model for the Plasmon Response of Complex Nanostructures
journal, October 2003


Toroidal nanotraps for cold polar molecules
journal, September 2015


Magnetostatics of the uniformly polarized torus
journal, September 2009

  • Beleggia, Marco; De Graef, Marc; Millev, Yonko T.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 465, Issue 2112
  • DOI: 10.1098/rspa.2009.0355

Light scattering in gold nanorings
journal, November 2004

  • Aizpurua, J.; Blanco, L.; Hanarp, P.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 89, Issue 1-4
  • DOI: 10.1016/j.jqsrt.2004.05.007

Mass production of shaped particles through vortex ring freezing
journal, August 2016

  • An, Duo; Warning, Alex; Yancey, Kenneth G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12401

Electrostatics of a family of conducting toroids
journal, March 2009


Theory of plasma transport in toroidal confinement systems
journal, April 1976


Dielectric Metamaterials with Toroidal Dipolar Response
journal, March 2015

  • Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.
  • Physical Review X, Vol. 5, Issue 1
  • DOI: 10.1103/PhysRevX.5.011036

Gold and Silver Nanoparticles in Sensing and Imaging:  Sensitivity of Plasmon Response to Size, Shape, and Metal Composition
journal, October 2006

  • Lee, Kyeong-Seok; El-Sayed, Mostafa A.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 39
  • DOI: 10.1021/jp062536y

Scattering losses in multidielectric structures designed for giant optical field enhancement
journal, January 2014

  • Lereu, Aude L.; Zerrad, Myriam; Ndiaye, Césaire
  • Applied Optics, Vol. 53, Issue 4
  • DOI: 10.1364/AO.53.00A412