skip to main content


Title: Multi-species impurity granule injection and mass deposition projections in NSTX-U discharges

Here, by employing a neutral gas shielding (NGS) model to characterize impurity granule injection, the ablation rates for three different species of granule: lithium, boron, and carbon, are determined. Utilizing the duration of ablation events recorded on experiments performed at DIII-D to calibrate the NGS model, we quantify the ablation rate with respect to the plasma density profile. The species-specific granule shielding constant is then used to model granule ablation within NSTX-U discharges. Simulations of 300, 500 and 700 micron diameter granules injected at 50 m s –1 are presented for NSTX-U L-mode type plasmas, as well as H-mode discharges with low natural ELM frequency. Additionally, ablation calculations of 500 micron granules of each species are presented at velocities ranging from 50–150 m s –1. In H-mode discharges these simulations show that the majority of the injected granule is ablated within or just past the edge steep gradient region. At this radial position, the perturbation to the background plasma generated by the ablating granule can lead to conditions advantageous for the rapid triggering of ELM crashes.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 57; Journal Issue: 7; Journal ID: ISSN 0029-5515
IOP Science
Research Org:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org:
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; granule injection; ELM pacing; neutral gas shielding
OSTI Identifier: