Laserdriven magnetized liner inertial fusion
Abstract
A laserdriven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magnetoinertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Twodimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. Onedimensional magnetohydrodynamic (MHD) modeling is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Twodimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1D because of end losses. Finally, scaling up the OMEGA point design to themore »
 Authors:

 Univ. of Rochester, NY (United States). Lab. for Laser Energetics
 (Taiwan). Inst. of Space and Plasma Sciences
 Sandia National Lab. (SNLNM), Albuquerque, NM (United States)
 Publication Date:
 Research Org.:
 Univ. of Rochester, NY (United States)
 Sponsoring Org.:
 USDOE National Nuclear Security Administration (NNSA); USDOE Advanced Research Projects Agency  Energy (ARPAE); Univ. of Rochester (United States); New York State Research and Development Authority (United States)
 Contributing Org.:
 Sandia National Lab. (SNLNM), Albuquerque, NM (United States); National Cheng Kung Univ., Tainan City (Taiwan)
 OSTI Identifier:
 1361694
 Grant/Contract Number:
 NA0001944; AR0000568
 Resource Type:
 Accepted Manuscript
 Journal Name:
 Physics of Plasmas
 Additional Journal Information:
 Journal Volume: 24; Journal Issue: 6; Journal ID: ISSN 1070664X
 Publisher:
 American Institute of Physics (AIP)
 Country of Publication:
 United States
 Language:
 English
 Subject:
 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Magnetic fields; Neutrons; Experiment design; Thermal conductivity; Plasma temperature
Citation Formats
Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Chang, P. Y., National Cheng Kung Univ., Tainan City, Sefkow, A. B., Peterson, K. J., Sinars, D. B., and Weis, M. R. Laserdriven magnetized liner inertial fusion. United States: N. p., 2017.
Web. doi:10.1063/1.4984779.
Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Chang, P. Y., National Cheng Kung Univ., Tainan City, Sefkow, A. B., Peterson, K. J., Sinars, D. B., & Weis, M. R. Laserdriven magnetized liner inertial fusion. United States. doi:10.1063/1.4984779.
Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Chang, P. Y., National Cheng Kung Univ., Tainan City, Sefkow, A. B., Peterson, K. J., Sinars, D. B., and Weis, M. R. Mon .
"Laserdriven magnetized liner inertial fusion". United States. doi:10.1063/1.4984779. https://www.osti.gov/servlets/purl/1361694.
@article{osti_1361694,
title = {Laserdriven magnetized liner inertial fusion},
author = {Davies, J. R. and Barnak, D. H. and Betti, R. and Campbell, E. M. and Chang, P. Y. and National Cheng Kung Univ., Tainan City and Sefkow, A. B. and Peterson, K. J. and Sinars, D. B. and Weis, M. R.},
abstractNote = {A laserdriven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magnetoinertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Twodimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. Onedimensional magnetohydrodynamic (MHD) modeling is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Twodimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1D because of end losses. Finally, scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500fold increase in neutron yield in 1D modeling.},
doi = {10.1063/1.4984779},
journal = {Physics of Plasmas},
number = 6,
volume = 24,
place = {United States},
year = {2017},
month = {6}
}
Web of Science
Works referenced in this record:
Ignition conditions for magnetized target fusion in cylindrical geometry
journal, January 2000
 Basko, M. M.; Kemp, A. J.; MeyerterVehn, J.
 Nuclear Fusion, Vol. 40, Issue 1
Seeding magnetic fields for laserdriven flux compression in highenergydensity plasmas
journal, April 2009
 Gotchev, O. V.; Knauer, J. P.; Chang, P. Y.
 Review of Scientific Instruments, Vol. 80, Issue 4
Note: Experimental platform for magnetized highenergydensity plasma studies at the omega laser facility
journal, January 2015
 Fiksel, G.; Agliata, A.; Barnak, D.
 Review of Scientific Instruments, Vol. 86, Issue 1
Compressing magnetic fields with highenergy lasers
journal, May 2010
 Knauer, J. P.; Gotchev, O. V.; Chang, P. Y.
 Physics of Plasmas, Vol. 17, Issue 5
Pulsedpowerdriven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010
 Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
 Physics of Plasmas, Vol. 17, Issue 5
The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
journal, November 2015
 Davies, J. R.; Betti, R.; Chang, P. Y.
 Physics of Plasmas, Vol. 22, Issue 11
Observation of plasma confinement in picosecond laserplasma interactions
journal, September 1993
 Bell, A. R.; Beg, F. N.; Chang, Z.
 Physical Review E, Vol. 48, Issue 3
Practical Improvements to the LeeMore Conductivity Near the MetalInsulator Transition
journal, March 2001
 Desjarlais, M. P.
 Contributions to Plasma Physics, Vol. 41, Issue 23
Electrical conductivity for warm, dense aluminum plasmas and liquids
journal, August 2002
 Desjarlais, M. P.; Kress, J. D.; Collins, L. A.
 Physical Review E, Vol. 66, Issue 2
LaserDriven MagneticFlux Compression in HighEnergyDensity Plasmas
journal, November 2009
 Gotchev, O. V.; Chang, P. Y.; Knauer, J. P.
 Physical Review Letters, Vol. 103, Issue 21
The B ^{−3/2} diffusion in magnetized plasma
journal, June 2013
 Hsu, JangYu; Wu, KaiBang; Kumar Agarwal, Sujeet
 Physics of Plasmas, Vol. 20, Issue 6
Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation
journal, January 1986
 Epperlein, E. M.; Haines, M. G.
 Physics of Fluids, Vol. 29, Issue 4
Design of magnetized liner inertial fusion experiments using the Z facility
journal, July 2014
 Sefkow, A. B.; Slutz, S. A.; Koning, J. M.
 Physics of Plasmas, Vol. 21, Issue 7
Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in MagnetoInertial Fusion
journal, October 2014
 Schmit, P. F.; Knapp, P. F.; Hansen, S. B.
 Physical Review Letters, Vol. 113, Issue 15
Diagnosing laserpreheated magnetized plasmas relevant to magnetized liner inertial fusion
journal, December 2015
 HarveyThompson, A. J.; Sefkow, A. B.; Nagayama, T. N.
 Physics of Plasmas, Vol. 22, Issue 12
Experimental Demonstration of FusionRelevant Conditions in Magnetized Liner Inertial Fusion
journal, October 2014
 Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.
 Physical Review Letters, Vol. 113, Issue 15
Exploring magnetized liner inertial fusion with a semianalytic model
journal, January 2016
 McBride, R. D.; Slutz, S. A.; Vesey, R. A.
 Physics of Plasmas, Vol. 23, Issue 1
Theory of hydroequivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility
journal, May 2014
 Nora, R.; Betti, R.; Anderson, K. S.
 Physics of Plasmas, Vol. 21, Issue 5
HighGain Magnetized Inertial Fusion
journal, January 2012
 Slutz, Stephen A.; Vesey, Roger A.
 Physical Review Letters, Vol. 108, Issue 2
Heat flux effects in Ohm's law
journal, November 1986
 Haines, M. G.
 Plasma Physics and Controlled Fusion, Vol. 28, Issue 11
Laserdriven magnetized liner inertial fusion on OMEGA
journal, May 2017
 Barnak, D. H.; Davies, J. R.; Betti, R.
 Physics of Plasmas, Vol. 24, Issue 5
Conceptual designs of two petawattclass pulsedpower accelerators for highenergydensityphysics experiments
journal, November 2015
 Stygar, W. A.; Awe, T. J.; Bailey, J. E.
 Physical Review Special Topics  Accelerators and Beams, Vol. 18, Issue 11
Twodimensional simulations of thermonuclear burn in ignitionscale inertial confinement fusion targets under compressed axial magnetic fields
journal, July 2013
 Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.
 Physics of Plasmas, Vol. 20, Issue 7
Scaling magnetized liner inertial fusion on Z and future pulsedpower accelerators
journal, February 2016
 Slutz, S. A.; Stygar, W. A.; Gomez, M. R.
 Physics of Plasmas, Vol. 23, Issue 2
Threedimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001
 Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
 Physics of Plasmas, Vol. 8, Issue 5
Works referencing / citing this record:
MagnetoRayleigh–Taylor instability in an elastic finitewidth medium overlying an ideal fluid
journal, April 2019
 Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
 Journal of Fluid Mechanics, Vol. 867
MagnetoRayleigh–Taylor instability in an elastic finitewidth medium overlying an ideal fluid
text, January 2019
 Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
 GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt