skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser-driven magnetized liner inertial fusion

Abstract

A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modeling is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Finally, scaling up the OMEGA point design to themore » MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [1];  [3];  [3];  [3]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  2. (Taiwan). Inst. of Space and Plasma Sciences
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Advanced Research Projects Agency - Energy (ARPA-E); Univ. of Rochester (United States); New York State Research and Development Authority (United States)
Contributing Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); National Cheng Kung Univ., Tainan City (Taiwan)
OSTI Identifier:
1361694
Grant/Contract Number:  
NA0001944; AR0000568
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 6; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Magnetic fields; Neutrons; Experiment design; Thermal conductivity; Plasma temperature

Citation Formats

Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Chang, P. -Y., National Cheng Kung Univ., Tainan City, Sefkow, A. B., Peterson, K. J., Sinars, D. B., and Weis, M. R. Laser-driven magnetized liner inertial fusion. United States: N. p., 2017. Web. doi:10.1063/1.4984779.
Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Chang, P. -Y., National Cheng Kung Univ., Tainan City, Sefkow, A. B., Peterson, K. J., Sinars, D. B., & Weis, M. R. Laser-driven magnetized liner inertial fusion. United States. doi:10.1063/1.4984779.
Davies, J. R., Barnak, D. H., Betti, R., Campbell, E. M., Chang, P. -Y., National Cheng Kung Univ., Tainan City, Sefkow, A. B., Peterson, K. J., Sinars, D. B., and Weis, M. R. Mon . "Laser-driven magnetized liner inertial fusion". United States. doi:10.1063/1.4984779. https://www.osti.gov/servlets/purl/1361694.
@article{osti_1361694,
title = {Laser-driven magnetized liner inertial fusion},
author = {Davies, J. R. and Barnak, D. H. and Betti, R. and Campbell, E. M. and Chang, P. -Y. and National Cheng Kung Univ., Tainan City and Sefkow, A. B. and Peterson, K. J. and Sinars, D. B. and Weis, M. R.},
abstractNote = {A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed in this paper for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ~10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ~200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modeling is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Finally, scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling.},
doi = {10.1063/1.4984779},
journal = {Physics of Plasmas},
number = 6,
volume = 24,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ignition conditions for magnetized target fusion in cylindrical geometry
journal, January 2000


Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas
journal, April 2009

  • Gotchev, O. V.; Knauer, J. P.; Chang, P. Y.
  • Review of Scientific Instruments, Vol. 80, Issue 4
  • DOI: 10.1063/1.3115983

Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility
journal, January 2015

  • Fiksel, G.; Agliata, A.; Barnak, D.
  • Review of Scientific Instruments, Vol. 86, Issue 1
  • DOI: 10.1063/1.4905625

Compressing magnetic fields with high-energy lasers
journal, May 2010

  • Knauer, J. P.; Gotchev, O. V.; Chang, P. Y.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3416557

Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
journal, November 2015

  • Davies, J. R.; Betti, R.; Chang, P. -Y.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4935286

Observation of plasma confinement in picosecond laser-plasma interactions
journal, September 1993


Electrical conductivity for warm, dense aluminum plasmas and liquids
journal, August 2002


Laser-Driven Magnetic-Flux Compression in High-Energy-Density Plasmas
journal, November 2009


The B −3/2 diffusion in magnetized plasma
journal, June 2013

  • Hsu, Jang-Yu; Wu, KaiBang; Kumar Agarwal, Sujeet
  • Physics of Plasmas, Vol. 20, Issue 6
  • DOI: 10.1063/1.4811472

Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation
journal, January 1986

  • Epperlein, E. M.; Haines, M. G.
  • Physics of Fluids, Vol. 29, Issue 4
  • DOI: 10.1063/1.865901

Design of magnetized liner inertial fusion experiments using the Z facility
journal, July 2014

  • Sefkow, A. B.; Slutz, S. A.; Koning, J. M.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4890298

Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion
journal, October 2014


Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion
journal, December 2015

  • Harvey-Thompson, A. J.; Sefkow, A. B.; Nagayama, T. N.
  • Physics of Plasmas, Vol. 22, Issue 12
  • DOI: 10.1063/1.4938047

Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion
journal, October 2014


Exploring magnetized liner inertial fusion with a semi-analytic model
journal, January 2016

  • McBride, R. D.; Slutz, S. A.; Vesey, R. A.
  • Physics of Plasmas, Vol. 23, Issue 1
  • DOI: 10.1063/1.4939479

Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility
journal, May 2014

  • Nora, R.; Betti, R.; Anderson, K. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875331

High-Gain Magnetized Inertial Fusion
journal, January 2012


Heat flux effects in Ohm's law
journal, November 1986


Laser-driven magnetized liner inertial fusion on OMEGA
journal, May 2017

  • Barnak, D. H.; Davies, J. R.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982692

Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
journal, November 2015

  • Stygar, W. A.; Awe, T. J.; Bailey, J. E.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 11
  • DOI: 10.1103/PhysRevSTAB.18.110401

Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
journal, July 2013

  • Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816813

Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators
journal, February 2016

  • Slutz, S. A.; Stygar, W. A.; Gomez, M. R.
  • Physics of Plasmas, Vol. 23, Issue 2
  • DOI: 10.1063/1.4941100

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

    Works referencing / citing this record:

    Magneto-Rayleigh–Taylor instability in an elastic finite-width medium overlying an ideal fluid
    journal, April 2019

    • Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
    • Journal of Fluid Mechanics, Vol. 867
    • DOI: 10.1017/jfm.2019.193

    Magneto-Rayleigh–Taylor instability in an elastic finite-width medium overlying an ideal fluid
    text, January 2019

    • Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
    • GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt
    • DOI: 10.15120/gsi-2019-00585