DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation

Abstract

Accelerated warming and hiatus periods in the long-term rise of Global Mean Surface Temperature (GMST) have, in recent decades, been associated with the Interdecadal Pacific Oscillation (IPO). Critically, decadal climate prediction relies on the skill of state-of-the-art climate models to reliably represent these low-frequency climate variations. We undertake a systematic evaluation of the simulation of the IPO in the suite of Coupled Model Intercomparison Project 5 (CMIP5) models. We track the IPO in pre-industrial (control) and all-forcings (historical) experiments using the IPO tripole index (TPI). The TPI is explicitly aligned with the observed spatial pattern of the IPO, and circumvents assumptions about the nature of global warming. We find that many models underestimate the ratio of decadal-to-total variance in sea surface temperatures (SSTs). However, the basin-wide spatial pattern of positive and negative phases of the IPO are simulated reasonably well, with spatial pattern correlation coefficients between observations and models spanning the range 0.4–0.8. Deficiencies are mainly in the extratropical Pacific. Models that better capture the spatial pattern of the IPO also tend to more realistically simulate the ratio of decadal to total variance. Of the 13% of model centuries that have a fractional bias in the decadal-to-total TPI variance ofmore » 0.2 or less, 84% also have a spatial pattern correlation coefficient with the observed pattern exceeding 0.5. This result is highly consistent across both IPO positive and negative phases. This is evidence that the IPO is related to one or more inherent dynamical mechanisms of the climate system.« less

Authors:
 [1];  [2];  [3];  [4];  [1];  [5];  [1];  [3];  [6];  [1];  [7]
  1. Univ. of Melbourne, VIC (Australia). School of Earth Sciences; Australian Research Council's Centre of Excellence for Climate System Science, Melbourne, VIC (Australia)
  2. National Center for Atmospheric Research, Boulder, CO (United States)
  3. Bureau of Meteorology, Melbourne, VIC (Australia)
  4. Met Office, Exeter (United Kingdom). Hadley Centre; Univ. of East Anglia, Norwich (United Kingdom). School of Environmental Sciences; Univ. of Gothenburg (Sweden). Dept. of Earth Sciences; Univ. of Southern Queensland, Toowoomba, QLD (Australia). International Centre for Applied Climate Sciences
  5. Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture and Food, Hobart, TAS (Australia)
  6. Australian Research Council's Centre of Excellence for Climate System Science, Melbourne, VIC (Australia); Monash Univ., Melbourne, VIC (Australia). School of Earth, Atmosphere and Environment
  7. Univ. of Bern (Switzerland). Inst. of Geography. Oeschger Centre for Climate Change Research
Publication Date:
Research Org.:
National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Univ. of Melbourne, VIC (Australia); Univ. of Bern (Switzerland); Met Office, Exeter (United Kingdom)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF); Australian Research Council (ARC) (Australia); Dept. for Business, Energy and Industrial Strategy (BEIS) (United Kingdom); Dept. for Environment, Food and Rural Affairs (DEFRA) (United Kingdom); Swiss National Science Foundation (NSF) (Switzerland)
Contributing Org.:
Australian Research Council's Centre of Excellence for Climate System Science, Melbourne, VIC (Australia); Bureau of Meteorology, Melbourne, VIC (Australia); Univ. of East Anglia, Norwich (United Kingdom); Univ. of Gothenburg (Sweden); Univ. of Southern Queensland, Toowoomba, QLD (Australia); Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture and Food, Hobart, TAS (Australia); Monash Univ., Melbourne, VIC (Australia)
OSTI Identifier:
1361666
Grant/Contract Number:  
FC2-97ER62402; LP150100062; CE110001028; GA01101; PZ00P2_154802
Resource Type:
Accepted Manuscript
Journal Name:
Environmental Research Letters
Additional Journal Information:
Journal Volume: 12; Journal Issue: 4; Journal ID: ISSN 1748-9326
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Interdecadal Pacific Oscillation; Pacific Decadal Oscillation; Pacific Decadal Variability; IPO; PDO; CMIP5; model evaluation

Citation Formats

Henley, Benjamin J., Meehl, Gerald, Power, Scott B., Folland, Chris K., King, Andrew D., Brown, Jaclyn N., Karoly, David J., Delage, Francois, Gallant, Ailie J. E., Freund, Mandy, and Neukom, Raphael. Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. United States: N. p., 2017. Web. doi:10.1088/1748-9326/aa5cc8.
Henley, Benjamin J., Meehl, Gerald, Power, Scott B., Folland, Chris K., King, Andrew D., Brown, Jaclyn N., Karoly, David J., Delage, Francois, Gallant, Ailie J. E., Freund, Mandy, & Neukom, Raphael. Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation. United States. https://doi.org/10.1088/1748-9326/aa5cc8
Henley, Benjamin J., Meehl, Gerald, Power, Scott B., Folland, Chris K., King, Andrew D., Brown, Jaclyn N., Karoly, David J., Delage, Francois, Gallant, Ailie J. E., Freund, Mandy, and Neukom, Raphael. Tue . "Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation". United States. https://doi.org/10.1088/1748-9326/aa5cc8. https://www.osti.gov/servlets/purl/1361666.
@article{osti_1361666,
title = {Spatial and temporal agreement in climate model simulations of the Interdecadal Pacific Oscillation},
author = {Henley, Benjamin J. and Meehl, Gerald and Power, Scott B. and Folland, Chris K. and King, Andrew D. and Brown, Jaclyn N. and Karoly, David J. and Delage, Francois and Gallant, Ailie J. E. and Freund, Mandy and Neukom, Raphael},
abstractNote = {Accelerated warming and hiatus periods in the long-term rise of Global Mean Surface Temperature (GMST) have, in recent decades, been associated with the Interdecadal Pacific Oscillation (IPO). Critically, decadal climate prediction relies on the skill of state-of-the-art climate models to reliably represent these low-frequency climate variations. We undertake a systematic evaluation of the simulation of the IPO in the suite of Coupled Model Intercomparison Project 5 (CMIP5) models. We track the IPO in pre-industrial (control) and all-forcings (historical) experiments using the IPO tripole index (TPI). The TPI is explicitly aligned with the observed spatial pattern of the IPO, and circumvents assumptions about the nature of global warming. We find that many models underestimate the ratio of decadal-to-total variance in sea surface temperatures (SSTs). However, the basin-wide spatial pattern of positive and negative phases of the IPO are simulated reasonably well, with spatial pattern correlation coefficients between observations and models spanning the range 0.4–0.8. Deficiencies are mainly in the extratropical Pacific. Models that better capture the spatial pattern of the IPO also tend to more realistically simulate the ratio of decadal to total variance. Of the 13% of model centuries that have a fractional bias in the decadal-to-total TPI variance of 0.2 or less, 84% also have a spatial pattern correlation coefficient with the observed pattern exceeding 0.5. This result is highly consistent across both IPO positive and negative phases. This is evidence that the IPO is related to one or more inherent dynamical mechanisms of the climate system.},
doi = {10.1088/1748-9326/aa5cc8},
journal = {Environmental Research Letters},
number = 4,
volume = 12,
place = {United States},
year = {Tue Jan 31 00:00:00 EST 2017},
month = {Tue Jan 31 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Interdecadal modulation of Australian rainfall
journal, February 2002


Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5
journal, September 2013

  • Brown, Jaclyn N.; Langlais, Clothilde; Maes, Christophe
  • Climate Dynamics, Vol. 42, Issue 11-12
  • DOI: 10.1007/s00382-013-1931-5

ENSO-Like Variability: 1900–2013
journal, December 2015


Tree-ring estimates of Pacific decadal climate variability
journal, December 2001


On the Asian expression of the PDO
journal, January 2006

  • D'Arrigo, Rosanne; Wilson, Rob
  • International Journal of Climatology, Vol. 26, Issue 12
  • DOI: 10.1002/joc.1326

Decadal modulation of global surface temperature by internal climate variability
journal, April 2015

  • Dai, Aiguo; Fyfe, John C.; Xie, Shang-Ping
  • Nature Climate Change, Vol. 5, Issue 6
  • DOI: 10.1038/nclimate2605

Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols
journal, December 2014

  • Dong, Lu; Zhou, Tianjun; Chen, Xiaolong
  • Geophysical Research Letters, Vol. 41, Issue 23
  • DOI: 10.1002/2014GL062269

The impact of global warming on the pacific decadal oscillation and the possible mechanism
journal, December 2013


Pacific interdecadal variability driven by tropical–extratropical interactions
journal, August 2013


North Pacific decadal variability in the CMIP5 last millennium simulations
journal, February 2016


Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone
journal, January 2002


North Pacific Decadal Variability and Climate Change in the IPCC AR4 Models
journal, June 2011

  • Furtado, Jason C.; Di Lorenzo, Emanuele; Schneider, Niklas
  • Journal of Climate, Vol. 24, Issue 12
  • DOI: 10.1175/2010JCLI3584.1

Making sense of the early-2000s warming slowdown
journal, February 2016

  • Fyfe, John C.; Meehl, Gerald A.; England, Matthew H.
  • Nature Climate Change, Vol. 6, Issue 3
  • DOI: 10.1038/nclimate2938

Mora et al. reply
journal, July 2014

  • Mora, Camilo; Frazier, Abby G.; Longman, Ryan J.
  • Nature, Vol. 511, Issue 7507
  • DOI: 10.1038/nature13524

A Tripole Index for the Interdecadal Pacific Oscillation
journal, March 2015

  • Henley, Benjamin J.; Gergis, Joelle; Karoly, David J.
  • Climate Dynamics, Vol. 45, Issue 11-12
  • DOI: 10.1007/s00382-015-2525-1

Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data: CLIMATE-INFORMED STOCHASTIC HYDROLOGICAL MODELING
journal, November 2011

  • Henley, Benjamin J.; Thyer, Mark A.; Kuczera, George
  • Water Resources Research, Vol. 47, Issue 11
  • DOI: 10.1029/2010WR010034

Bayesian PCA for reconstruction of historical sea surface temperatures
conference, June 2009

  • Ilin, Alexander; Kaplan, Alexey
  • 2009 International Joint Conference on Neural Networks (IJCNN 2009 - Atlanta)
  • DOI: 10.1109/IJCNN.2009.5178744

Bayesian modelling and ensemble reconstruction of mid-scale spatial variability in North Atlantic sea-surface temperatures for 1850-2008
journal, August 2011

  • Karspeck, Alicia R.; Kaplan, Alexey; Sain, Stephan R.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 138, Issue 662
  • DOI: 10.1002/qj.900

Multi-decadal variability of flood risk: MULTI-DECADAL VARIABILITY OF FLOOD RISK
journal, January 2003

  • Kiem, Anthony S.; Franks, Stewart W.; Kuczera, George
  • Geophysical Research Letters, Vol. 30, Issue 2
  • DOI: 10.1029/2002GL015992

Recent global-warming hiatus tied to equatorial Pacific surface cooling
journal, August 2013


GCM projections for the Pacific Decadal Oscillation under greenhouse forcing for the early 21st century
journal, May 2011

  • Lapp, Suzan L.; St. Jacques, Jeannine-Marie; Barrow, Elaine M.
  • International Journal of Climatology, Vol. 32, Issue 9
  • DOI: 10.1002/joc.2364

Drivers of decadal hiatus periods in the 20th and 21st centuries
journal, August 2014

  • Maher, Nicola; Gupta, Alexander Sen; England, Matthew H.
  • Geophysical Research Letters, Vol. 41, Issue 16
  • DOI: 10.1002/2014GL060527

Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming
journal, August 2014

  • McGregor, Shayne; Timmermann, Axel; Stuecker, Malte F.
  • Nature Climate Change, Vol. 4, Issue 10
  • DOI: 10.1038/nclimate2330

Relating the strength of the tropospheric biennial oscillation (TBO) to the phase of the Interdecadal Pacific Oscillation (IPO)
journal, October 2012

  • Meehl, Gerald A.; Arblaster, Julie M.
  • Geophysical Research Letters, Vol. 39, Issue 20
  • DOI: 10.1029/2012GL053386

Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods
journal, September 2011

  • Meehl, Gerald A.; Arblaster, Julie M.; Fasullo, John T.
  • Nature Climate Change, Vol. 1, Issue 7
  • DOI: 10.1038/nclimate1229

The Mid-1970s Climate Shift in the Pacific and the Relative Roles of Forced versus Inherent Decadal Variability
journal, February 2009

  • Meehl, Gerald A.; Hu, Aixue; Santer, Benjamin D.
  • Journal of Climate, Vol. 22, Issue 3
  • DOI: 10.1175/2008JCLI2552.1

Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation
journal, June 2016

  • Meehl, Gerald A.; Hu, Aixue; Teng, Haiyan
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11718

Climate model simulations of the observed early-2000s hiatus of global warming
journal, September 2014

  • Meehl, Gerald A.; Teng, Haiyan; Arblaster, Julie M.
  • Nature Climate Change, Vol. 4, Issue 10
  • DOI: 10.1038/nclimate2357

An Evaluation of Reproducibility of the Pacific Decadal Oscillation in the CMIP3 Simulations
journal, January 2009

  • Oshima, Kazuhiro; Tanimoto, Youichi
  • Journal of the Meteorological Society of Japan, Vol. 87, Issue 4
  • DOI: 10.2151/jmsj.87.755

Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models: CLIMATE VARIABILITY IN CMIP5 MODELS
journal, May 2013

  • Polade, Suraj D.; Gershunov, Alexander; Cayan, Daniel R.
  • Geophysical Research Letters, Vol. 40, Issue 10
  • DOI: 10.1002/grl.50491

Inter-decadal modulation of the impact of ENSO on Australia
journal, May 1999


Unabated planetary warming and its ocean structure since 2006
journal, February 2015

  • Roemmich, Dean; Church, John; Gilson, John
  • Nature Climate Change, Vol. 5, Issue 3
  • DOI: 10.1038/nclimate2513

The Forcing of the Pacific Decadal Oscillation
journal, November 2005

  • Schneider, Niklas; Cornuelle, Bruce D.
  • Journal of Climate, Vol. 18, Issue 21
  • DOI: 10.1175/JCLI3527.1

Assessing General Circulation Model Simulations of Atmospheric Teleconnection Patterns
journal, August 2009

  • Stoner, Anne Marie K.; Hayhoe, Katharine; Wuebbles, Donald J.
  • Journal of Climate, Vol. 22, Issue 16
  • DOI: 10.1175/2009JCLI2577.1

How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming?
journal, June 2015


Summarizing multiple aspects of model performance in a single diagram
journal, April 2001

  • Taylor, Karl E.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D7
  • DOI: 10.1029/2000JD900719

Early twentieth-century warming linked to tropical Pacific wind strength
journal, December 2014

  • Thompson, Diane M.; Cole, Julia E.; Shen, Glen T.
  • Nature Geoscience, Vol. 8, Issue 2
  • DOI: 10.1038/NGEO2321

Works referencing / citing this record:

Southern African summer-rainfall variability, and its teleconnections, on interannual to interdecadal timescales in CMIP5 models
journal, March 2019


What Caused the Global Surface Warming Hiatus of 1998–2013?
journal, March 2017


The Signature of Oceanic Processes in Decadal Extratropical SST Anomalies
journal, August 2018

  • O'Reilly, Christopher H.; Zanna, Laure
  • Geophysical Research Letters, Vol. 45, Issue 15
  • DOI: 10.1029/2018gl079077

Uncertainty in near-term global surface warming linked to tropical Pacific climate variability
journal, April 2019

  • Bordbar, Mohammad Hadi; England, Matthew H.; Sen Gupta, Alex
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-09761-2

Possible causes of data model discrepancy in the temperature history of the last Millennium
journal, May 2018


Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions
journal, January 2017

  • Freund, Mandy; Henley, Benjamin J.; Karoly, David J.
  • Climate of the Past, Vol. 13, Issue 12
  • DOI: 10.5194/cp-13-1751-2017

Using paleoclimate reconstructions to analyse hydrological epochs associated with Pacific decadal variability
journal, January 2018

  • Zhang, Lanying; Kuczera, George; Kiem, Anthony S.
  • Hydrology and Earth System Sciences, Vol. 22, Issue 12
  • DOI: 10.5194/hess-22-6399-2018

Using paleoclimate reconstructions to analyse hydrological epochs associated with Pacific Decadal Variability
journal, April 2018

  • Zhang, Lanying; Kucera, George
  • Hydrology and Earth System Sciences Discussions
  • DOI: 10.5194/hess-2018-173

Possible causes of data model discrepancy in the temperature history of the last Millennium
text, January 2018

  • Neukom, Raphael; Schurer, Andrew P.; Steiger, Nathan. J.
  • Nature Publishing Group
  • DOI: 10.7892/boris.116550

Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era
text, January 2019


Moving beyond the catchment scale: Value and opportunities in large‐scale hydrology to understand our changing world
journal, March 2020

  • Kingston, Daniel G.; Massei, Nicolas; Dieppois, Bastien
  • Hydrological Processes, Vol. 34, Issue 10
  • DOI: 10.1002/hyp.13729

Possible causes of data model discrepancy in the temperature history of the last Millennium
journal, May 2018