skip to main content


Title: Optimizing biomass feedstock blends with respect to cost, supply, and quality for catalyzed and uncatalyzed fast pyrolysis applications

Here, biomass cost, quality and quantity are important parameters to consider when choosing feedstocks and locations for biorefineries. Biomass cost is dependent upon type, location, quantities available in a given area and logistics costs as well the quality needed for the biorefinery. Biomass quality depends upon type, growth conditions, weather, harvesting methods, storage conditions as well as any preprocessing methods used to improve quality. Biomass quantity depends heavily on location as well as growth conditions, weather, harvesting methods and storage conditions. This study examines how all three of these parameters affect the biomass mixture that is needed in a biomass depot or biorefinery to achieve the lowest cost with the highest quality and at the quantities needed for biorefinery operation. Four biomass depots were proposed in South Carolina that would each process the predominant type of biomass available in that area and each produce 200,000 tons of feedstock per year. These depots would then feed a centrally located 800,000 ton biorefinery that would convert the feedstocks to pyrolysis oil using either catalyzed or uncatalyzed fast pyrolysis. The four depots each needed to produce different blends of biomass based upon the quantities available to them but still meet the minimum qualitymore » requirements for the biorefinery. Costs were minimized by using waste biomass resources such as construction and demolition waste, logging residues and forest residuals. Depending upon the quality specification required by the biorefinery, it was necessary to utilize preprocessing methods such as air classification and acid leaching to upgrade biomass quality. In the case of uncatalyzed fast pyrolysis, all four depots could produce biomass blends that were lower cost than the the preferred pyrolysis feedstock, clean pine, and meet quality and quantity specifications. For catalyzed fast pyrolysis, three of the four depots were able to produce blends that met both quality and quantity specifications at minimum cost. The fourth depot would not be able to produce a blend meeting specifications without increasing the supply radius for the depot.« less
ORCiD logo [1] ;  [1] ;  [1] ;  [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1939-1234; PII: 9842
Grant/Contract Number:
Accepted Manuscript
Journal Name:
BioEnergy Research
Additional Journal Information:
Journal Volume: 10; Journal Issue: 3; Journal ID: ISSN 1939-1234
Research Org:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
Country of Publication:
United States
09 BIOMASS FUELS; acid leaching; air classification; biomass cost; biomass quality; biomass quantity; feedstock blends; biorefinery; feedstock depot
OSTI Identifier: