skip to main content

DOE PAGESDOE PAGES

Title: Astrometric Calibration and Performance of the Dark Energy Camera

We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500 Mpix, 3 $deg^2$ science field of view, and across 4 years of operation. This is done using internal comparisons of $~ 4 x 10^7$ measurements of high-S/N stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for: optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to $$\approx 10 \mu m$$ when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and $$5^{\prime}-10^{\prime}$$ arcmin coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density $$\approx 0.7$$ $$arcmin^{-2}$$, e.g. from Gaia, the typical atmospheric distortions can be interpolated to $$\approx$$ 7 mas RMS accuracy (for 30 s exposures) with $$1^{\prime}$$ arcmin coherence length for residual errors. Remaining detectable error contributors are 2-4 mas RMS from unmodelled stray electric fields in the devices, and another 2-4 mas RMS from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas ( $$\approx$$ 0.02 pixels, or $$\approx$$ 300 nm) on the focal plane, plus the stochastic atmospheric distortion.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Report Number(s):
arXiv:1703.01679; FERMILAB-PUB-17-057-AE; arXiv:1710.10943; FERMILAB-PUB-17-459-AE
Journal ID: ISSN 0004-6280; 1516279
Grant/Contract Number:
AC02-07CH11359; AC05-00OR22725; AC02-76SF00515; AST-1615555; SC0007901
Type:
Accepted Manuscript
Journal Name:
Publications of the Astronomical Society of the Pacific
Additional Journal Information:
Journal Volume: 129; Journal Issue: 977; Journal ID: ISSN 0004-6280
Publisher:
Astronomical Society of the Pacific
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Orgs:
DES Collaboration
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
OSTI Identifier:
1361381
Alternate Identifier(s):
OSTI ID: 1346375; OSTI ID: 1369280; OSTI ID: 1423239

Bernstein, G. M., Armstrong, R., Plazas, A. A., Walker, A. R., Abbott, T. M. C., Allam, S., Bechtol, K., Benoit-Lévy, A., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cunha, C. E., Costa, L. N. da, DePoy, D. L., Desai, S., Diehl, H. T., Eifler, T. F., Fernandez, E., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Krause, E., Kuehn, K., Kuropatkin, N., Li, T. S., Maia, M. A. G., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Ogando, R. L. C., Reil, K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., and Tarle, G.. Astrometric Calibration and Performance of the Dark Energy Camera. United States: N. p., Web. doi:10.1088/1538-3873/aa6c55.
Bernstein, G. M., Armstrong, R., Plazas, A. A., Walker, A. R., Abbott, T. M. C., Allam, S., Bechtol, K., Benoit-Lévy, A., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cunha, C. E., Costa, L. N. da, DePoy, D. L., Desai, S., Diehl, H. T., Eifler, T. F., Fernandez, E., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Krause, E., Kuehn, K., Kuropatkin, N., Li, T. S., Maia, M. A. G., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Ogando, R. L. C., Reil, K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., & Tarle, G.. Astrometric Calibration and Performance of the Dark Energy Camera. United States. doi:10.1088/1538-3873/aa6c55.
Bernstein, G. M., Armstrong, R., Plazas, A. A., Walker, A. R., Abbott, T. M. C., Allam, S., Bechtol, K., Benoit-Lévy, A., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Cunha, C. E., Costa, L. N. da, DePoy, D. L., Desai, S., Diehl, H. T., Eifler, T. F., Fernandez, E., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kent, S., Krause, E., Kuehn, K., Kuropatkin, N., Li, T. S., Maia, M. A. G., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Ogando, R. L. C., Reil, K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., and Tarle, G.. 2017. "Astrometric Calibration and Performance of the Dark Energy Camera". United States. doi:10.1088/1538-3873/aa6c55. https://www.osti.gov/servlets/purl/1361381.
@article{osti_1361381,
title = {Astrometric Calibration and Performance of the Dark Energy Camera},
author = {Bernstein, G. M. and Armstrong, R. and Plazas, A. A. and Walker, A. R. and Abbott, T. M. C. and Allam, S. and Bechtol, K. and Benoit-Lévy, A. and Brooks, D. and Burke, D. L. and Rosell, A. Carnero and Kind, M. Carrasco and Carretero, J. and Cunha, C. E. and Costa, L. N. da and DePoy, D. L. and Desai, S. and Diehl, H. T. and Eifler, T. F. and Fernandez, E. and Fosalba, P. and Frieman, J. and García-Bellido, J. and Gerdes, D. W. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Honscheid, K. and James, D. J. and Kent, S. and Krause, E. and Kuehn, K. and Kuropatkin, N. and Li, T. S. and Maia, M. A. G. and March, M. and Marshall, J. L. and Menanteau, F. and Miquel, R. and Ogando, R. L. C. and Reil, K. and Roodman, A. and Rykoff, E. S. and Sanchez, E. and Scarpine, V. and Schindler, R. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, M. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G.},
abstractNote = {We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500 Mpix, 3 $deg^2$ science field of view, and across 4 years of operation. This is done using internal comparisons of $~ 4 x 10^7$ measurements of high-S/N stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for: optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to $\approx 10 \mu m$ when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and $5^{\prime}-10^{\prime}$ arcmin coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density $\approx 0.7$ $arcmin^{-2}$, e.g. from Gaia, the typical atmospheric distortions can be interpolated to $\approx$ 7 mas RMS accuracy (for 30 s exposures) with $1^{\prime}$ arcmin coherence length for residual errors. Remaining detectable error contributors are 2-4 mas RMS from unmodelled stray electric fields in the devices, and another 2-4 mas RMS from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas ( $\approx$ 0.02 pixels, or $\approx$ 300 nm) on the focal plane, plus the stochastic atmospheric distortion.},
doi = {10.1088/1538-3873/aa6c55},
journal = {Publications of the Astronomical Society of the Pacific},
number = 977,
volume = 129,
place = {United States},
year = {2017},
month = {5}
}