DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selection biases in empirical p(z) methods for weak lensing

Abstract

To measure the mass of foreground objects with weak gravitational lensing, one needs to estimate the redshift distribution of lensed background sources. This is commonly done in an empirical fashion, i.e. with a reference sample of galaxies of known spectroscopic redshift, matched to the source population. In this paper, we develop a simple decision tree framework that, under the ideal conditions of a large, purely magnitude-limited reference sample, allows an unbiased recovery of the source redshift probability density function p(z), as a function of magnitude and colour. We use this framework to quantify biases in empirically estimated p(z) caused by selection effects present in realistic reference and weak lensing source catalogues, namely (1) complex selection of reference objects by the targeting strategy and success rate of existing spectroscopic surveys and (2) selection of background sources by the success of object detection and shape measurement at low signal to noise. For intermediate-to-high redshift clusters, and for depths and filter combinations appropriate for ongoing lensing surveys, we find that (1) spectroscopic selection can cause biases above the 10 per cent level, which can be reduced to ≈5 per cent by optimal lensing weighting, while (2) selection effects in the shape catalogue biasmore » mass estimates at or below the 2 per cent level. Finally, this illustrates the importance of completeness of the reference catalogues for empirical redshift estimation.« less

Authors:
 [1];  [2]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States). Physics Dept. Kavli Inst. for Particle Astrophysics and Cosmology (KIPAC)
  2. Max Planck Inst. for Extraterrestrial Physics, Garching (Germany)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE; National Aeronautics and Space Administration (NASA)
Contributing Org.:
Max Planck Inst. for Extraterrestrial Physics, Garching (Germany)
OSTI Identifier:
1361132
Grant/Contract Number:  
AC02-76SF00515; PF5-160138
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 468; Journal Issue: 1; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; weak gravitational lensing; galaxy distances and redshifts; cosmology observations

Citation Formats

Gruen, D., and Brimioulle, F. Selection biases in empirical p(z) methods for weak lensing. United States: N. p., 2017. Web. doi:10.1093/mnras/stx471.
Gruen, D., & Brimioulle, F. Selection biases in empirical p(z) methods for weak lensing. United States. https://doi.org/10.1093/mnras/stx471
Gruen, D., and Brimioulle, F. Thu . "Selection biases in empirical p(z) methods for weak lensing". United States. https://doi.org/10.1093/mnras/stx471. https://www.osti.gov/servlets/purl/1361132.
@article{osti_1361132,
title = {Selection biases in empirical p(z) methods for weak lensing},
author = {Gruen, D. and Brimioulle, F.},
abstractNote = {To measure the mass of foreground objects with weak gravitational lensing, one needs to estimate the redshift distribution of lensed background sources. This is commonly done in an empirical fashion, i.e. with a reference sample of galaxies of known spectroscopic redshift, matched to the source population. In this paper, we develop a simple decision tree framework that, under the ideal conditions of a large, purely magnitude-limited reference sample, allows an unbiased recovery of the source redshift probability density function p(z), as a function of magnitude and colour. We use this framework to quantify biases in empirically estimated p(z) caused by selection effects present in realistic reference and weak lensing source catalogues, namely (1) complex selection of reference objects by the targeting strategy and success rate of existing spectroscopic surveys and (2) selection of background sources by the success of object detection and shape measurement at low signal to noise. For intermediate-to-high redshift clusters, and for depths and filter combinations appropriate for ongoing lensing surveys, we find that (1) spectroscopic selection can cause biases above the 10 per cent level, which can be reduced to ≈5 per cent by optimal lensing weighting, while (2) selection effects in the shape catalogue bias mass estimates at or below the 2 per cent level. Finally, this illustrates the importance of completeness of the reference catalogues for empirical redshift estimation.},
doi = {10.1093/mnras/stx471},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 1,
volume = 468,
place = {United States},
year = {2017},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Feature importance for machine learning redshifts applied to SDSS galaxies
journal, March 2015

  • Hoyle, B.; Rau, M. M.; Zitlau, R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 449, Issue 2
  • DOI: 10.1093/mnras/stv373

Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross‐Correlations
journal, September 2008

  • Newman, Jeffrey A.
  • The Astrophysical Journal, Vol. 684, Issue 1
  • DOI: 10.1086/589982

The Alhambra Survey: a Large area Multimedium-Band Optical and Near-Infrared Photometric Survey
journal, August 2008


SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

GaBoDS: The Garching-Bonn Deep Survey: IV. Methods for the image reduction of multi-chip cameras demonstrated on data from the ESOWide-Field Imager
journal, July 2005

  • Erben, T.; Schirmer, M.; Dietrich, J. P.
  • Astronomische Nachrichten, Vol. 326, Issue 6
  • DOI: 10.1002/asna.200510396

The VIMOS VLT deep survey: First epoch VVDS-deep survey: 11 564 spectra with 17.5 
journal, August 2005


Precise photometric redshifts with a narrow-band filter set: the PAU survey at the William Herschel Telescope
journal, June 2014

  • Martí, P.; Miquel, R.; Castander, F. J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 1
  • DOI: 10.1093/mnras/stu801

CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey: CFHTLenS
journal, October 2012

  • Heymans, Catherine; Van Waerbeke, Ludovic; Miller, Lance
  • Monthly Notices of the Royal Astronomical Society, Vol. 427, Issue 1
  • DOI: 10.1111/j.1365-2966.2012.21952.x

Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey
journal, September 2006


The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6
journal, April 2015


Photometric redshifts of galaxies
journal, April 1986

  • Loh, E. D.; Spillar, E. J.
  • The Astrophysical Journal, Vol. 303
  • DOI: 10.1086/164062

A Precise Cluster mass Profile Averaged from the Highest-Quality Lensing data
journal, August 2011


Measuring photometric redshifts using galaxy images and Deep Neural Networks
journal, July 2016


Weighing the Giants – I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images
journal, February 2014

  • von der Linden, Anja; Allen, Mark T.; Applegate, Douglas E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 439, Issue 1
  • DOI: 10.1093/mnras/stt1945

The DES Science Verification weak lensing shear catalogues
journal, May 2016

  • Jarvis, M.; Sheldon, E.; Zuntz, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 460, Issue 2
  • DOI: 10.1093/mnras/stw990

The Deep2 Galaxy Redshift Survey: Design, Observations, data Reduction, and Redshifts
journal, August 2013

  • Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc
  • The Astrophysical Journal Supplement Series, Vol. 208, Issue 1
  • DOI: 10.1088/0067-0049/208/1/5

Reachability Checking of Finite Precision Timed Automata
journal, January 2006


Weak lensing analysis of RXC J2248.7−4431
journal, April 2013

  • Gruen, D.; Brimioulle, F.; Seitz, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 2
  • DOI: 10.1093/mnras/stt566

Dark matter halo properties from galaxy–galaxy lensing★
journal, May 2013

  • Brimioulle, F.; Seitz, S.; Lerchster, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 2
  • DOI: 10.1093/mnras/stt525

Estimating photometric redshifts with artificial neural networks
journal, March 2003

  • Firth, Andrew E.; Lahav, Ofer; Somerville, Rachel S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 339, Issue 4
  • DOI: 10.1046/j.1365-8711.2003.06271.x

Spectroscopic needs for imaging dark energy experiments
journal, March 2015


Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry
journal, December 1995

  • Connolly, A. J.; Csabai, I.; Szalay, A. S.
  • The Astronomical Journal, Vol. 110
  • DOI: 10.1086/117720

Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys
journal, June 2016

  • Leistedt, Boris; Mortlock, Daniel J.; Peiris, Hiranya V.
  • Monthly Notices of the Royal Astronomical Society, Vol. 460, Issue 4
  • DOI: 10.1093/mnras/stw1304

Weighing the Giants – III. Methods and measurements of accurate galaxy cluster weak-lensing masses
journal, February 2014

  • Applegate, Douglas E.; von der Linden, Anja; Kelly, Patrick L.
  • Monthly Notices of the Royal Astronomical Society, Vol. 439, Issue 1
  • DOI: 10.1093/mnras/stt2129

Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North
journal, December 1999


The Evolution of the Optical and Near‐Infrared Galaxy Luminosity Functions and Luminosity Densities to z  ∼ 2
journal, September 2005

  • Dahlen, Tomas; Mobasher, Bahram; Somerville, Rachel S.
  • The Astrophysical Journal, Vol. 631, Issue 1
  • DOI: 10.1086/432027

zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field
journal, September 2007

  • Lilly, S. J.; Fevre, O. Le; Renzini, A.
  • The Astrophysical Journal Supplement Series, Vol. 172, Issue 1
  • DOI: 10.1086/516589

THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES
journal, June 2016

  • Laigle, C.; McCracken, H. J.; Ilbert, O.
  • The Astrophysical Journal Supplement Series, Vol. 224, Issue 2
  • DOI: 10.3847/0067-0049/224/2/24

TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests
journal, May 2013

  • Carrasco Kind, Matias; Brunner, Robert J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 2
  • DOI: 10.1093/mnras/stt574

Estimating the redshift distribution of photometric galaxy samples
journal, October 2008


Mapping cluster mass distributions via gravitational lensing of background galaxies
journal, January 1995

  • Broadhurst, T. J.; Taylor, A. N.; Peacock, J. A.
  • The Astrophysical Journal, Vol. 438
  • DOI: 10.1086/175053

The Prism Multi-Object Survey (Primus). ii. data Reduction and Redshift Fitting
journal, April 2013


Accurate photometric redshift probability density estimation – method comparison and application
journal, August 2015

  • Rau, Markus Michael; Seitz, Stella; Brimioulle, Fabrice
  • Monthly Notices of the Royal Astronomical Society, Vol. 452, Issue 4
  • DOI: 10.1093/mnras/stv1567

Recovering redshift distributions with cross-correlations: pushing the boundaries
journal, April 2013

  • Schmidt, Samuel J.; Ménard, Brice; Scranton, Ryan
  • Monthly Notices of the Royal Astronomical Society, Vol. 431, Issue 4
  • DOI: 10.1093/mnras/stt410

Bayesian Photometric Redshift Estimation
journal, June 2000

  • Benitez, Narciso
  • The Astrophysical Journal, Vol. 536, Issue 2
  • DOI: 10.1086/308947

Using Galaxy Two‐Point Correlation Functions to Determine the Redshift Distributions of Galaxies Binned by Photometric Redshift
journal, November 2006

  • Schneider, Michael; Knox, Lloyd; Zhan, Hu
  • The Astrophysical Journal, Vol. 651, Issue 1
  • DOI: 10.1086/507675

The WIRCam Deep Survey: I. Counts, colours, and mass-functions derived from near-infrared imaging in the CFHTLS deep fields⋆
journal, August 2012


ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning
journal, August 2016


Weak lensing analysis of SZ-selected clusters of galaxies from the SPT and Planck surveys
journal, June 2014

  • Gruen, D.; Seitz, S.; Brimioulle, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 2
  • DOI: 10.1093/mnras/stu949

ANN z : Estimating Photometric Redshifts Using Artificial Neural Networks
journal, April 2004

  • Collister, Adrian A.; Lahav, Ofer
  • Publications of the Astronomical Society of the Pacific, Vol. 116, Issue 818
  • DOI: 10.1086/383254

COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg 2
journal, December 2008


The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey
journal, May 2004

  • Sheldon, Erin S.; Johnston, David E.; Frieman, Joshua A.
  • The Astronomical Journal, Vol. 127, Issue 5
  • DOI: 10.1086/383293

Weak-lensing mass estimates of galaxy groups and the line-of-sight contamination: Weak-lensing mass estimates of galaxy groups
journal, December 2011


A Method for Weak Lensing Observations
journal, August 1995

  • Kaiser, Nick; Squires, Gordon; Broadhurst, Tom
  • The Astrophysical Journal, Vol. 449
  • DOI: 10.1086/176071

Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey
journal, January 2013

  • Miller, L.; Heymans, C.; Kitching, T. D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 429, Issue 4
  • DOI: 10.1093/mnras/sts454

Weak gravitational lensing
journal, January 2001


Gravitational lensing analysis of the Kilo-Degree Survey
journal, October 2015

  • Kuijken, Konrad; Heymans, Catherine; Hildebrandt, Hendrik
  • Monthly Notices of the Royal Astronomical Society, Vol. 454, Issue 4
  • DOI: 10.1093/mnras/stv2140

Mapping the Galaxy Color–Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys
journal, October 2015


The VIMOS Public Extragalactic Survey (VIPERS): First Data Release of 57 204 spectroscopic measurements
journal, January 2014


GaBoDS: The Garching-Bonn Deep Survey: V. Data release of the ESO Deep-Public-Survey
journal, June 2006


EAZY: A Fast, Public Photometric Redshift Code
journal, October 2008

  • Brammer, Gabriel B.; van Dokkum, Pieter G.; Coppi, Paolo
  • The Astrophysical Journal, Vol. 686, Issue 2
  • DOI: 10.1086/591786

Works referencing / citing this record:

Quantifying systematics from the shear inversion on weak-lensing peak counts
journal, June 2018


The galaxy–subhalo connection in low-redshift galaxy clusters from weak gravitational lensing
journal, May 2018

  • Sifón, Cristóbal; Herbonnet, Ricardo; Hoekstra, Henk
  • Monthly Notices of the Royal Astronomical Society, Vol. 478, Issue 1
  • DOI: 10.1093/mnras/sty1161

Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters
journal, October 2018

  • McClintock, T.; Varga, T. N.; Gruen, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 482, Issue 1
  • DOI: 10.1093/mnras/sty2711

Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies
journal, April 2018

  • Hoyle, B.; Gruen, D.; Bernstein, G. M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 478, Issue 1
  • DOI: 10.1093/mnras/sty957

Dark Energy Survey Year 1 results: the effect of intracluster light on photometric redshifts for weak gravitational lensing
journal, July 2019

  • Gruen, D.; Zhang, Y.; Palmese, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 3
  • DOI: 10.1093/mnras/stz2036

Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing
journal, August 2019

  • Buchs, R.; Davis, C.; Gruen, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 1
  • DOI: 10.1093/mnras/stz2162

Dark Energy Survey Year 1 results: validation of weak lensing cluster member contamination estimates from P(z) decomposition
journal, August 2019

  • Varga, T. N.; DeRose, J.; Gruen, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 2
  • DOI: 10.1093/mnras/stz2185

Self-consistent redshift estimation using correlation functions without a spectroscopic reference sample
journal, February 2019

  • Hoyle, Ben; Rau, Markus Michael
  • Monthly Notices of the Royal Astronomical Society, Vol. 485, Issue 3
  • DOI: 10.1093/mnras/stz502

The Wendelstein Weak Lensing (WWL) pathfinder: accurate weak lensing masses for Planck clusters
journal, March 2019

  • Rehmann, R. L.; Gruen, D.; Seitz, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 486, Issue 1
  • DOI: 10.1093/mnras/stz817

Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data
journal, March 2019

  • Hikage, Chiaki; Oguri, Masamune; Hamana, Takashi
  • Publications of the Astronomical Society of Japan, Vol. 71, Issue 2
  • DOI: 10.1093/pasj/psz010

Weak-lensing Mass Calibration of ACTPol Sunyaev–Zel’dovich Clusters with the Hyper Suprime-Cam Survey
journal, April 2019

  • Miyatake, Hironao; Battaglia, Nicholas; Hilton, Matt
  • The Astrophysical Journal, Vol. 875, Issue 1
  • DOI: 10.3847/1538-4357/ab0af0

The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing
text, January 2017


Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data
text, January 2018