skip to main content

DOE PAGESDOE PAGES

Title: Coulomb engineering of the bandgap and excitons in two-dimensional materials

Here, the ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS 2 and WSe 2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution.
Authors:
 [1] ;  [2] ;  [3] ;  [3] ;  [4] ;  [4] ;  [5] ;  [6] ;  [6] ;  [6] ; ORCiD logo [3] ;  [3] ;  [3] ;  [1] ;  [3] ;  [7]
  1. Columbia Univ., New York, NY (United States); Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Columbia Univ., New York, NY (United States); Univ. Federal do Ceara, Fortaleza (Brazil)
  3. Columbia Univ., New York, NY (United States)
  4. Columbia Univ., New York, NY (United States); Stanford Univ., Stanford, CA (United States)
  5. Univ. of Chicago, Chicago, IL (United States)
  6. Univ. of Regensburg, Regensburg (Germany)
  7. Columbia Univ., New York, NY (United States); Univ. of Regensburg, Regensburg (Germany)
Publication Date:
Grant/Contract Number:
AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Research Org:
SLAC National Accelerator Lab. (SLAC), Menlo Park, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; electronic properties and materials; two-dimensional materials
OSTI Identifier:
1360901

Raja, Archana, Chaves, Andrey, Yu, Jaeeun, Arefe, Ghidewon, Hill, Heather M., Rigosi, Albert F., Berkelbach, Timothy C., Nagler, Philipp, Schuller, Christian, Korn, Tobias, Nuckolls, Colin, Hone, James, Brus, Louis E., Heinz, Tony F., Reichman, David R., and Chernikov, Alexey. Coulomb engineering of the bandgap and excitons in two-dimensional materials. United States: N. p., Web. doi:10.1038/ncomms15251.
Raja, Archana, Chaves, Andrey, Yu, Jaeeun, Arefe, Ghidewon, Hill, Heather M., Rigosi, Albert F., Berkelbach, Timothy C., Nagler, Philipp, Schuller, Christian, Korn, Tobias, Nuckolls, Colin, Hone, James, Brus, Louis E., Heinz, Tony F., Reichman, David R., & Chernikov, Alexey. Coulomb engineering of the bandgap and excitons in two-dimensional materials. United States. doi:10.1038/ncomms15251.
Raja, Archana, Chaves, Andrey, Yu, Jaeeun, Arefe, Ghidewon, Hill, Heather M., Rigosi, Albert F., Berkelbach, Timothy C., Nagler, Philipp, Schuller, Christian, Korn, Tobias, Nuckolls, Colin, Hone, James, Brus, Louis E., Heinz, Tony F., Reichman, David R., and Chernikov, Alexey. 2017. "Coulomb engineering of the bandgap and excitons in two-dimensional materials". United States. doi:10.1038/ncomms15251. https://www.osti.gov/servlets/purl/1360901.
@article{osti_1360901,
title = {Coulomb engineering of the bandgap and excitons in two-dimensional materials},
author = {Raja, Archana and Chaves, Andrey and Yu, Jaeeun and Arefe, Ghidewon and Hill, Heather M. and Rigosi, Albert F. and Berkelbach, Timothy C. and Nagler, Philipp and Schuller, Christian and Korn, Tobias and Nuckolls, Colin and Hone, James and Brus, Louis E. and Heinz, Tony F. and Reichman, David R. and Chernikov, Alexey},
abstractNote = {Here, the ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution.},
doi = {10.1038/ncomms15251},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {2017},
month = {5}
}

Works referenced in this record:

Emerging Photoluminescence in Monolayer MoS2
journal, April 2010
  • Splendiani, Andrea; Sun, Liang; Zhang, Yuanbo
  • Nano Letters, Vol. 10, Issue 4, p. 1271-1275
  • DOI: 10.1021/nl903868w

Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010

Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors
journal, August 2014
  • Huang, Chunming; Wu, Sanfeng; Sanchez, Ana M.
  • Nature Materials, Vol. 13, Issue 12, p. 1096-1101
  • DOI: 10.1038/nmat4064

Vertical and in-plane heterostructures from WS2/MoS2 monolayers
journal, September 2014
  • Gong, Yongji; Lin, Junhao; Wang, Xingli
  • Nature Materials, Vol. 13, Issue 12, p. 1135-1142
  • DOI: 10.1038/nmat4091

Van der Waals heterostructures
journal, July 2013
  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials
journal, July 2013
  • Bernardi, Marco; Palummo, Maurizia; Grossman, Jeffrey C.
  • Nano Letters, Vol. 13, Issue 8, p. 3664-3670
  • DOI: 10.1021/nl401544y

Two-dimensional atomic crystals
journal, July 2005
  • Novoselov, K. S.; Jiang, D.; Schedin, F.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 30, p. 10451-10453
  • DOI: 10.1073/pnas.0502848102

Phase-engineered low-resistance contacts for ultrathin MoS2 transistors
journal, August 2014
  • Kappera, Rajesh; Voiry, Damien; Yalcin, Sibel Ebru
  • Nature Materials, Vol. 13, Issue 12, p. 1128-1134
  • DOI: 10.1038/nmat4080