skip to main content

DOE PAGESDOE PAGES

Title: Atom Interferometry in a Warm Vapor

Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.
Authors:
 [1] ;  [2] ;  [1] ;  [1] ;  [2] ;  [2] ;  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States). Center for Quantum Information and Control (CQuIC), Dept. of Physics and Astronomy
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Report Number(s):
SAND-2016-10092J
Journal ID: ISSN 0031-9007; PRLTAO; 648122; TRN: US1702735
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 118; Journal Issue: 16; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA); USDOD; Defense Advanced Research Projects Agency (DARPA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS
OSTI Identifier:
1360800

Biedermann, G. W., McGuinness, H. J., Rakholia, A. V., Jau, Y. -Y., Wheeler, D. R., Sterk, J. D., and Burns, G. R.. Atom Interferometry in a Warm Vapor. United States: N. p., Web. doi:10.1103/PhysRevLett.118.163601.
Biedermann, G. W., McGuinness, H. J., Rakholia, A. V., Jau, Y. -Y., Wheeler, D. R., Sterk, J. D., & Burns, G. R.. Atom Interferometry in a Warm Vapor. United States. doi:10.1103/PhysRevLett.118.163601.
Biedermann, G. W., McGuinness, H. J., Rakholia, A. V., Jau, Y. -Y., Wheeler, D. R., Sterk, J. D., and Burns, G. R.. 2017. "Atom Interferometry in a Warm Vapor". United States. doi:10.1103/PhysRevLett.118.163601. https://www.osti.gov/servlets/purl/1360800.
@article{osti_1360800,
title = {Atom Interferometry in a Warm Vapor},
author = {Biedermann, G. W. and McGuinness, H. J. and Rakholia, A. V. and Jau, Y. -Y. and Wheeler, D. R. and Sterk, J. D. and Burns, G. R.},
abstractNote = {Here, we demonstrate matter-wave interference in a warm vapor of rubidium atoms. Established approaches to light-pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. Lastly, this interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.},
doi = {10.1103/PhysRevLett.118.163601},
journal = {Physical Review Letters},
number = 16,
volume = 118,
place = {United States},
year = {2017},
month = {4}
}