skip to main content

DOE PAGESDOE PAGES

Title: Boost breaking in the EFT of inflation

If time-translations are spontaneously broken, so are boosts. This symmetry breaking pattern can be non-linearly realized by either just the Goldstone boson of time translations, or by four Goldstone bosons associated with time translations and boosts. Here in this paper we extend the Effective Field Theory of Multifield Inflation to consider the case in which the additional Goldstone bosons associated with boosts are light and coupled to the Goldstone boson of time translations. The symmetry breaking pattern forces a coupling to curvature so that the mass of the additional Goldstone bosons is predicted to be equal to √2H in the vast majority of the parameter space where they are light. This pattern therefore offers a natural way of generating self-interacting particles with Hubble mass during inflation. After constructing the general effective Lagrangian, we study how these particles mix and interact with the curvature fluctuations, generating potentially detectable non-Gaussian signals.
Authors:
 [1] ;  [2] ;  [3]
  1. Stanford Univ., CA (United States). Stanford Inst. for Theoretical Physics
  2. Hong Kong Univ. of Science and Technology (Hong Kong); Kobe Univ. (Japan). Dept. of Physics
  3. Stanford Univ., CA (United States). Stanford Inst. for Theoretical Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology
Publication Date:
Grant/Contract Number:
AC02-76SF00515; FG02-12ER41854
Type:
Accepted Manuscript
Journal Name:
Journal of Cosmology and Astroparticle Physics
Additional Journal Information:
Journal Volume: 2017; Journal Issue: 02; Journal ID: ISSN 1475-7516
Publisher:
Institute of Physics (IOP)
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS
OSTI Identifier:
1360759