skip to main content


Title: Advantages of unity with SU(4)-color: Reflections through neutrino oscillations, baryogenesis and proton decay

As a tribute to Abdus Salam, I recall the initiation in 1972-73 of the idea of grand unification based on the view that lepton number is the fourth color. Motivated by aesthetic demands, these attempts led to the suggestion that the existing SU (2) x U (1) symmetry be extended minimally to the quark-lepton and left-right symmetric non-Abelian gauge structure G (2,2,4) = SU (2) L x SU (2) R x SU (4)-color. This served to unify members of a family within a single L-R self-conjugate multiplet. It also explained: the quantization of electric charge, the co-existence of quarks and leptons, and that of their three basic forces $-$ weak, electromagnetic, and strong $-$ while providing the appealing possibility that nature is fundamentally left-right symmetric (parity-conserving). The minimal extension of the symmetry G (2,2,4) to a simple group is given by the attractive symmetry SO (10) that came a year later. The advantages of the core symmetry G (2,2,4), including those listed above (which are of course retained by SO (10) as well), are noted. These include the introductions of: (i) the right-handed neutrino as a compelling member of each family, (ii) (B-L) as a local symmetry, and (iii) themore » mass relation m (ν τ) Dirac = m top (M GUT). These three features, all arising due to SU(4)-color, as well as the gauge coupling uni cation scale (identi ed with the (B-L)- breaking scale), are crucially needed to understand the tiny mass-scales of the neutrino oscillations within the seesaw mechanism, and to implement successfully the mechanism of baryogenesis via leptogenesis. Implications of a well-motivated class of models based on supersymmetric SO(10) or a string-unified G(2, 2, 4) symmetry in 4D for (a) gauge coupling uni cation, (b) fermion masses and mixings, (c) neutrino osillations, (d) baryogenesis via leptogenesis, and last but not least (e) proton decay are presented. Recent works on the latter providing upper limits on proton lifetimes suggest that the potential for discovery of proton decay in the next-generation detectors would be high.« less
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0217-751X
Grant/Contract Number:
Accepted Manuscript
Journal Name:
International Journal of Modern Physics A
Additional Journal Information:
Journal Volume: 32; Journal Issue: 09; Journal ID: ISSN 0217-751X
World Scientific
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
Country of Publication:
United States
OSTI Identifier: