skip to main content

DOE PAGESDOE PAGES

Title: Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO 3

The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here in this paper we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO 3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [5] ;  [5] ;  [5] ;  [6] ;  [7] ;  [8] ;  [9] ;  [9] ;  [10] ;  [11] ;  [11] ;  [11] ;  [11] ;  [11] ;  [12] ;  [13] more »;  [2] ;  [14] ;  [15] ;  [2] ;  [2] ;  [13] ;  [16] ;  [17] ;  [5] ;  [4] ;  [6] ;  [18] ;  [2] ;  [19] « less
  1. Stanford Univ., CA (United States). Dept. of Electrical Engineering; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  3. Univ. of Pennsylvania, Philadelphia, PA (United States). Makineni Theoretical Lab., Dept. of Chemistry; Carnegie Inst. of Washington, Argonne, IL (United States). Geophysical Lab.
  4. Univ. of Pennsylvania, Philadelphia, PA (United States). Makineni Theoretical Lab., Dept. of Chemistry
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Chemistry
  6. Univ. of Duisburg-Essen, Duisburg (Germany). Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE)
  7. Lund Univ. (Sweden). MAX IV Lab.
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  9. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  10. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  12. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  13. Univ. of Wisconsin, Madison, WI (United States). Dept. of Materials Science and Engineering
  14. Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials
  15. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  16. Stanford Univ., CA (United States). Geballe Lab. for Advanced Materials
  17. Lund Univ. (Sweden). Dept. of Physics
  18. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  19. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Materials Science and Engineering,; SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
Publication Date:
Grant/Contract Number:
SC0012375; AC02-06CH11357; FG02-07ER15920; AC02-76SF00515; W911NF-14-1-0104; CMMI-1334241; CHE-1111557; N00014-12-1-1033; N00014-13-1-0509; AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 94; Journal Issue: 18; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); US Army Research Office (ARO); National Science Foundation (NSF); US Department of the Navy, Office of Naval Research (ONR)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1360175
Alternate Identifier(s):
OSTI ID: 1333328; OSTI ID: 1468336

Chen, F., Zhu, Y., Liu, S., Qi, Y., Hwang, H. Y., Brandt, N. C., Lu, J., Quirin, F., Enquist, H., Zalden, P., Hu, T., Goodfellow, J., Sher, M. -J., Hoffmann, M. C., Zhu, D., Lemke, H., Glownia, J., Chollet, M., Damodaran, A. R., Park, J., Cai, Z., Jung, I. W., Highland, M. J., Walko, D. A., Freeland, J. W., Evans, P. G., Vailionis, A., Larsson, J., Nelson, K. A., Rappe, A. M., Sokolowski-Tinten, K., Martin, L. W., Wen, H., and Lindenberg, A. M.. Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3. United States: N. p., Web. doi:10.1103/PhysRevB.94.180104.
Chen, F., Zhu, Y., Liu, S., Qi, Y., Hwang, H. Y., Brandt, N. C., Lu, J., Quirin, F., Enquist, H., Zalden, P., Hu, T., Goodfellow, J., Sher, M. -J., Hoffmann, M. C., Zhu, D., Lemke, H., Glownia, J., Chollet, M., Damodaran, A. R., Park, J., Cai, Z., Jung, I. W., Highland, M. J., Walko, D. A., Freeland, J. W., Evans, P. G., Vailionis, A., Larsson, J., Nelson, K. A., Rappe, A. M., Sokolowski-Tinten, K., Martin, L. W., Wen, H., & Lindenberg, A. M.. Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3. United States. doi:10.1103/PhysRevB.94.180104.
Chen, F., Zhu, Y., Liu, S., Qi, Y., Hwang, H. Y., Brandt, N. C., Lu, J., Quirin, F., Enquist, H., Zalden, P., Hu, T., Goodfellow, J., Sher, M. -J., Hoffmann, M. C., Zhu, D., Lemke, H., Glownia, J., Chollet, M., Damodaran, A. R., Park, J., Cai, Z., Jung, I. W., Highland, M. J., Walko, D. A., Freeland, J. W., Evans, P. G., Vailionis, A., Larsson, J., Nelson, K. A., Rappe, A. M., Sokolowski-Tinten, K., Martin, L. W., Wen, H., and Lindenberg, A. M.. 2016. "Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3". United States. doi:10.1103/PhysRevB.94.180104. https://www.osti.gov/servlets/purl/1360175.
@article{osti_1360175,
title = {Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3},
author = {Chen, F. and Zhu, Y. and Liu, S. and Qi, Y. and Hwang, H. Y. and Brandt, N. C. and Lu, J. and Quirin, F. and Enquist, H. and Zalden, P. and Hu, T. and Goodfellow, J. and Sher, M. -J. and Hoffmann, M. C. and Zhu, D. and Lemke, H. and Glownia, J. and Chollet, M. and Damodaran, A. R. and Park, J. and Cai, Z. and Jung, I. W. and Highland, M. J. and Walko, D. A. and Freeland, J. W. and Evans, P. G. and Vailionis, A. and Larsson, J. and Nelson, K. A. and Rappe, A. M. and Sokolowski-Tinten, K. and Martin, L. W. and Wen, H. and Lindenberg, A. M.},
abstractNote = {The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here in this paper we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.},
doi = {10.1103/PhysRevB.94.180104},
journal = {Physical Review B},
number = 18,
volume = 94,
place = {United States},
year = {2016},
month = {11}
}