skip to main content

DOE PAGESDOE PAGES

Title: A regime-dependent artificial neural network technique for short-range solar irradiance forecasting

Authors:
ORCiD logo ; ;
Publication Date:
Grant/Contract Number:
[DE-EE0006016]
Type:
Publisher's Accepted Manuscript
Journal Name:
Renewable Energy
Additional Journal Information:
Journal Volume: 89; Journal Issue: C; Related Information: CHORUS Timestamp: 2018-09-16 13:57:11; Journal ID: ISSN 0960-1481
Publisher:
Elsevier
Sponsoring Org:
USDOE
Country of Publication:
United Kingdom
Language:
English
OSTI Identifier:
1359816

McCandless, T. C., Haupt, S. E., and Young, G. S.. A regime-dependent artificial neural network technique for short-range solar irradiance forecasting. United Kingdom: N. p., Web. doi:10.1016/j.renene.2015.12.030.
McCandless, T. C., Haupt, S. E., & Young, G. S.. A regime-dependent artificial neural network technique for short-range solar irradiance forecasting. United Kingdom. doi:10.1016/j.renene.2015.12.030.
McCandless, T. C., Haupt, S. E., and Young, G. S.. 2016. "A regime-dependent artificial neural network technique for short-range solar irradiance forecasting". United Kingdom. doi:10.1016/j.renene.2015.12.030.
@article{osti_1359816,
title = {A regime-dependent artificial neural network technique for short-range solar irradiance forecasting},
author = {McCandless, T. C. and Haupt, S. E. and Young, G. S.},
abstractNote = {},
doi = {10.1016/j.renene.2015.12.030},
journal = {Renewable Energy},
number = C,
volume = 89,
place = {United Kingdom},
year = {2016},
month = {4}
}