DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain

Abstract

In bulk material processing, annealing and quenching metals such as aluminum (Al) can improve mechanical properties. On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Our study examines the effect of annealing and quenching on the strain of Al particles and the corresponding reactivity of aluminum and copper oxide (CuO) composites. Micron-sized Al particles were annealed and quenched according to treatments designed to affect Al mechanical properties. Furthermore, synchrotron X-ray diffraction (XRD) analysis of the particles reveals that thermal treatment increased the dilatational strain of the aluminum-core, alumina-shell particles. Flame propagation experiments also show thermal treatments effect reactivity when combined with CuO. An effective annealing and quenching treatment for increasing aluminum reactivity was identified. Our results show that altering the mechanical properties of Al particles affects their reactivity.

Authors:
 [1];  [1];  [2]
  1. Texas Tech Univ., Lubbock, TX (United States). Mechanical Engineering
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1379036
Alternate Identifier(s):
OSTI ID: 1358704
Grant/Contract Number:  
AC02-05CH11231; W911NF-14-1-0250
Resource Type:
Accepted Manuscript
Journal Name:
Acta Materialia
Additional Journal Information:
Journal Volume: 103; Journal Issue: C; Journal ID: ISSN 1359-6454
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; aluminum; powder; dilatational strain; mechanical properties; reactivity; annealing; quenching; synchrotron XRD; energetic materials; combustion; thermites

Citation Formats

McCollum, Jena, Pantoya, Michelle L., and Tamura, Nobumichi. Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain. United States: N. p., 2015. Web. doi:10.1016/j.actamat.2015.10.025.
McCollum, Jena, Pantoya, Michelle L., & Tamura, Nobumichi. Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain. United States. https://doi.org/10.1016/j.actamat.2015.10.025
McCollum, Jena, Pantoya, Michelle L., and Tamura, Nobumichi. Fri . "Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain". United States. https://doi.org/10.1016/j.actamat.2015.10.025. https://www.osti.gov/servlets/purl/1379036.
@article{osti_1379036,
title = {Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain},
author = {McCollum, Jena and Pantoya, Michelle L. and Tamura, Nobumichi},
abstractNote = {In bulk material processing, annealing and quenching metals such as aluminum (Al) can improve mechanical properties. On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Our study examines the effect of annealing and quenching on the strain of Al particles and the corresponding reactivity of aluminum and copper oxide (CuO) composites. Micron-sized Al particles were annealed and quenched according to treatments designed to affect Al mechanical properties. Furthermore, synchrotron X-ray diffraction (XRD) analysis of the particles reveals that thermal treatment increased the dilatational strain of the aluminum-core, alumina-shell particles. Flame propagation experiments also show thermal treatments effect reactivity when combined with CuO. An effective annealing and quenching treatment for increasing aluminum reactivity was identified. Our results show that altering the mechanical properties of Al particles affects their reactivity.},
doi = {10.1016/j.actamat.2015.10.025},
journal = {Acta Materialia},
number = C,
volume = 103,
place = {United States},
year = {Fri Nov 06 00:00:00 EST 2015},
month = {Fri Nov 06 00:00:00 EST 2015}
}

Journal Article:

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of surface coatings on aluminum fuel particles toward nanocomposite combustion
journal, December 2013


Investigating the trade-offs of microwave susceptors in energetic composites: Microwave heating versus combustion performance
journal, March 2014

  • Crane, C. A.; Pantoya, M. L.; Weeks, B. L.
  • Journal of Applied Physics, Vol. 115, Issue 10
  • DOI: 10.1063/1.4868337

Simple stress formula for multilayered thin films on a thick substrate
journal, March 1982

  • Vilms, J.; Kerps, D.
  • Journal of Applied Physics, Vol. 53, Issue 3
  • DOI: 10.1063/1.330653

Understanding the mechanism of aluminium nanoparticle oxidation
journal, October 2006


A Study of Low-Temperature Creep in Aluminium by Change-in-Stress Experiments: Thermal Activation of Attractive Junctions
journal, January 1970


Stress relaxation in cold worked mild steel
journal, July 1983


Effect of oxide particles on the stabilization and final microstructure in aluminium
journal, September 2011


Simultaneous Pressure and Optical Measurements of Nanoaluminum Thermites: Investigating the Reaction Mechanism
journal, May 2010

  • Sullivan, K.; Zachariah, M.
  • Journal of Propulsion and Power, Vol. 26, Issue 3
  • DOI: 10.2514/1.45834

Factors Influencing Temperature Fields during Combustion Reactions
journal, April 2014

  • Kappagantula, Keerti; Crane, Charles; Pantoya, Michelle
  • Propellants, Explosives, Pyrotechnics, Vol. 39, Issue 3
  • DOI: 10.1002/prep.201300154

Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion
journal, August 2015

  • McCollum, Jena; Pantoya, Michelle L.; Iacono, Scott T.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 33
  • DOI: 10.1021/acsami.5b05238

Influence of Atomizing Gases on the Oxide-Film Morphology and Thickness of Aluminum Powders
journal, January 2000

  • Özbilen, S.; Ünal, A.; Sheppard, T.
  • Oxidation of Metals, Vol. 53, Issue 1/2, p. 1-23
  • DOI: 10.1023/A:1004505728950

Melt dispersion mechanism for fast reaction of nanothermites
journal, August 2006

  • Levitas, Valery I.; Asay, Blaine W.; Son, Steven F.
  • Applied Physics Letters, Vol. 89, Issue 7
  • DOI: 10.1063/1.2335362

Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles
journal, August 2006

  • Trunov, M. A.; Schoenitz, M.; Dreizin, E. L.
  • Combustion Theory and Modelling, Vol. 10, Issue 4
  • DOI: 10.1080/13647830600578506

Do nanoenergetic particles remain nano-sized during combustion?
journal, May 2014


Gas Atomization of Amorphous Aluminum: Part I. Thermal Behavior Calculations
journal, August 2009

  • Zheng, Baolong; Lin, Yaojun; Zhou, Yizhang
  • Metallurgical and Materials Transactions B, Vol. 40, Issue 5
  • DOI: 10.1007/s11663-009-9276-5

Gas Atomization of Amorphous Aluminum Powder: Part II. Experimental Investigation
journal, August 2009

  • Zheng, Baolong; Lin, Yaojun; Zhou, Yizhang
  • Metallurgical and Materials Transactions B, Vol. 40, Issue 6
  • DOI: 10.1007/s11663-009-9277-4

Passivated Iodine Pentoxide Oxidizer for Potential Biocidal Nanoenergetic Applications
journal, September 2013

  • Feng, Jingyu; Jian, Guoqiang; Liu, Qing
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 18
  • DOI: 10.1021/am4028263

Oxidation and Melting of Aluminum Nanopowders
journal, July 2006

  • Trunov, Mikhaylo A.; Umbrajkar, Swati M.; Schoenitz, Mirko
  • The Journal of Physical Chemistry B, Vol. 110, Issue 26
  • DOI: 10.1021/jp0614188

A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source
journal, March 2009

  • Kunz, Martin; Tamura, Nobumichi; Chen, Kai
  • Review of Scientific Instruments, Vol. 80, Issue 3
  • DOI: 10.1063/1.3096295

Thermal stability of nanostructured aluminum powder synthesized by high-energy milling
journal, August 2011

  • Abdoli, Hamid; Ghanbari, Mohsen; Baghshahi, Saeid
  • Materials Science and Engineering: A, Vol. 528, Issue 22-23
  • DOI: 10.1016/j.msea.2011.05.057

Capping and Passivation of Aluminum Nanoparticles Using Alkyl-Substituted Epoxides
journal, July 2009

  • Chung, Stephen W.; Guliants, Elena A.; Bunker, Christopher E.
  • Langmuir, Vol. 25, Issue 16
  • DOI: 10.1021/la901822h

On the mechanism of asymmetric aluminum particle combustion
journal, June 1999


Reactive sintering: An important component in the combustion of nanocomposite thermites
journal, January 2012


Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal
journal, April 2007

  • Levitas, Valery I.; Asay, Blaine W.; Son, Steven F.
  • Journal of Applied Physics, Vol. 101, Issue 8, Article No. 083524
  • DOI: 10.1063/1.2720182

The high temperature bulk modulus of aluminium: an assessment using experimental enthalpy and thermal expansion data
journal, June 2002


Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles
journal, December 2011

  • Firmansyah, Dudi Adi; Sullivan, Kyle; Lee, Kwang-Sung
  • The Journal of Physical Chemistry C, Vol. 116, Issue 1
  • DOI: 10.1021/jp2095483

Effect of oxide shell growth on nano-aluminum thermite propagation rates
journal, November 2012


The effect of pre-heating on flame propagation in nanocomposite thermites
journal, August 2010


Factors Affecting Thermal Stress Resistance of Ceramic Materials
journal, January 1955


Kinetics of precipitation in aluminum alloys during continuous cooling
journal, January 1974

  • Evancho, J. W.; Staley, J. T.
  • Metallurgical transactions, Vol. 5, Issue 1
  • DOI: 10.1007/BF02642924

Works referencing / citing this record:

Impact ignition and combustion of micron-scale aluminum particles pre-stressed with different quenching rates
journal, September 2018

  • Hill, Kevin J.; Tamura, Nobumichi; Levitas, Valery I.
  • Journal of Applied Physics, Vol. 124, Issue 11
  • DOI: 10.1063/1.5044546

The mechanical and thermal responses of colliding oxide-coated aluminum nanoparticles
journal, April 2017

  • Ma, Bo; Zhao, Feng; Cheng, Xinlu
  • Journal of Applied Physics, Vol. 121, Issue 14
  • DOI: 10.1063/1.4980118

Single Particle Combustion of Pre-Stressed Aluminum
journal, May 2019

  • Hill, Kevin J.; Pantoya, Michelle L.; Washburn, Ephraim
  • Materials, Vol. 12, Issue 11
  • DOI: 10.3390/ma12111737

Highly Reactive Prestressed Aluminum under High Velocity Impact Loading: Processing for Improved Energy Conversion
journal, July 2019

  • Hill, Kevin J.; Pantoya, Michelle L.
  • Advanced Engineering Materials, Vol. 21, Issue 9
  • DOI: 10.1002/adem.201900492

Highly reactive energetic films by pre-stressing nano-aluminum particles
journal, January 2019

  • Bello, Michael N.; Williams, Alan M.; Levitas, Valery I.
  • RSC Advances, Vol. 9, Issue 69
  • DOI: 10.1039/c9ra04871e

Single Particle Combustion of Pre-Stressed Aluminum
journal, May 2019

  • Hill, Kevin J.; Pantoya, Michelle L.; Washburn, Ephraim
  • Materials, Vol. 12, Issue 11
  • DOI: 10.3390/ma12111737

Metallo‐Hydrogel‐Assisted Synthesis and Direct Writing of Transition Metal Dichalcogenides
journal, May 2019