skip to main content


Title: Extrinsic ion migration in perovskite solar cells

In this study, the migration of intrinsic ions (e.g., MA +, Pb 2+, I ) in organic–inorganic hybrid perovskites has received significant attention with respect to the critical roles of these ions in the hysteresis and degradation in perovskite solar cells (PSCs). Here, we demonstrate that extrinsic ions (e.g., Li +, H +, Na +), when used in the contact layers in PSCs, can migrate across the perovskite layer and strongly impact PSC operation. In a TiO 2/perovskite/spiro-OMeTAD-based PSC, Li +-ion migration from spiro-OMeTAD to the perovskite and TiO 2 layer is illustrated by time-of-flight secondary-ion mass spectrometry. The movement of Li + ions in PSCs plays an important role in modulating the solar cell performance, tuning TiO 2 carrier-extraction properties, and affecting hysteresis in PSCs. The influence of Li +-ion migration was investigated using time-resolved photoluminescence, Kelvin probe force microscopy, and external quantum efficiency spectra. Other extrinsic ions such as H + and Na + also show a clear impact on the performance and hysteresis in PSCs. Understanding the impacts of extrinsic ions in perovskite-based devices could lead to new material and device designs to further advance perovskite technology for various applications.
ORCiD logo [1] ;  [2] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1754-5692; EESNBY
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 10; Journal Issue: 5; Journal ID: ISSN 1754-5692
Royal Society of Chemistry
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); SunShot Initiative
Country of Publication:
United States
14 SOLAR ENERGY; organic-inorganic; hybrid perovskites; intrinsic ions; extrinsic ions; contact layers
OSTI Identifier: