skip to main content


Title: Equilibrium denaturation and preferential interactions of an RNA tetraloop with urea

Urea is an important organic cosolute with implications in maintaining osmotic stress in cells and differentially stabilizing ensembles of folded biomolecules. We report an equilibrium study of urea-induced denaturation of a hyperstable RNA tetraloop through unbiased replica exchange molecular dynamics. We find that, in addition to destabilizing the folded state, urea smooths the RNA free energy landscape by destabilizing specific configurations, and forming favorable interactions with RNA nucleobases. A linear concentration-dependence of the free energy (m-value) is observed, in agreement with the results of other RNA hairpins and proteins. Additionally, analysis of the hydrogen-bonding and stacking interactions within RNA primarily show temperature-dependence, while interactions between RNA and urea primarily show concentration-dependence. Lastly, our findings provide valuable insight into the effects of urea on RNA folding and describe the thermodynamics of a basic RNA hairpin as a function of solution chemistry.
ORCiD logo [1] ; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1520-6106
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 121; Journal Issue: 15; Journal ID: ISSN 1520-6106
American Chemical Society
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Laboratory Directed Research and Development (LDRD) Program
Country of Publication:
United States
59 BASIC BIOLOGICAL SCIENCES; Biological Science; RNA folding, molecular simulations, denaturants
OSTI Identifier: