skip to main content

DOE PAGESDOE PAGES

Title: Energetic particles in spherical tokamak plasmas

Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together with higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion–ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but thismore » could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion behaviour, supplementing the information provided by neutron detectors. In MAST electrons were accelerated to highly suprathermal energies as a result of edge localised modes, while in both MAST and NSTX ions were accelerated due to internal reconnection events. Lastly, ion acceleration has also been observed during merging-compression start-up in MAST.« less
Authors:
 [1] ;  [2]
  1. Culham Science Centre, Abingdon (United Kingdom). Culham Centre for Fusion Energy (CCFE)
  2. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Publication Date:
Grant/Contract Number:
EP/I501045; AC02-76CH03073
Type:
Accepted Manuscript
Journal Name:
Plasma Physics and Controlled Fusion
Additional Journal Information:
Journal Volume: 59; Journal Issue: 5; Journal ID: ISSN 0741-3335
Publisher:
IOP Science
Research Org:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; spherical tokamak; fast-ion population; Alfvén eigenmodes; fast ion transport; fishbones; particle acceleration
OSTI Identifier:
1358041

McClements, K. G., and Fredrickson, E. D.. Energetic particles in spherical tokamak plasmas. United States: N. p., Web. doi:10.1088/1361-6587/aa626e.
McClements, K. G., & Fredrickson, E. D.. Energetic particles in spherical tokamak plasmas. United States. doi:10.1088/1361-6587/aa626e.
McClements, K. G., and Fredrickson, E. D.. 2017. "Energetic particles in spherical tokamak plasmas". United States. doi:10.1088/1361-6587/aa626e. https://www.osti.gov/servlets/purl/1358041.
@article{osti_1358041,
title = {Energetic particles in spherical tokamak plasmas},
author = {McClements, K. G. and Fredrickson, E. D.},
abstractNote = {Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together with higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion–ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion behaviour, supplementing the information provided by neutron detectors. In MAST electrons were accelerated to highly suprathermal energies as a result of edge localised modes, while in both MAST and NSTX ions were accelerated due to internal reconnection events. Lastly, ion acceleration has also been observed during merging-compression start-up in MAST.},
doi = {10.1088/1361-6587/aa626e},
journal = {Plasma Physics and Controlled Fusion},
number = 5,
volume = 59,
place = {United States},
year = {2017},
month = {3}
}