skip to main content


Title: Effect of nickel on point defects diffusion in Fe – Ni alloys

Iron-Nickel alloys are perspective alloys as nuclear energy structural materials because of their good radiation damage tolerance and mechanical properties. Understanding of experimentally observed features such as the effect of Ni content to radiation defects evolution is essential for developing predictive models of radiation. Recently an atomic-scale modelling study has revealed one particular mechanism of Ni effect related to the reduced mobility of clusters of interstitial atoms in Fe-Ni alloys. In this paper we present results of the microsecond-scale molecular dynamics study of point defects, i.e. vacancies and self-interstitial atoms, diffusion in Fe-Ni alloys. It is found that the addition of Ni atoms affects diffusion processes: diffusion of vacancies is enhanced in the presence of Ni, whereas diffusion of interstitials is reduced and these effects increase at high Ni concentration and low temperature. As a result, the role of Ni solutes in radiation damage evolution in Fe-Ni alloys is discussed.
 [1] ;  [1] ;  [2]
  1. Univ. Politecnica de Catalunya. Barcelona-Tech, Barcelona (Spain)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Acta Materialia
Additional Journal Information:
Journal Volume: 132; Journal Issue: C; Journal ID: ISSN 1359-6454
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
36 MATERIALS SCIENCE; diffusion; Fe-Ni alloy; radiation effects; molecular dynamics
OSTI Identifier: