DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells

Abstract

Here, we show that the cooperation of lead thiocyanate additive and a solvent annealing process can effectively increase the grain size of mixed-cation lead mixed-halide perovskite thin films while avoiding excess lead iodide formation. As a result, the average grain size of the wide-bandgap mixed-cation lead perovskite thin films increases from 66 ± 24 to 1036 ± 111 nm, and the mean carrier lifetime shows a more than 3-fold increase, from 330 ns to over 1000 ns. Consequently, the average open-circuit voltage of wide-bandgap perovskite solar cells increases by 80 (70) mV, and the average power conversion efficiency (PCE) increases from 13.44 ± 0.48 (11.75 ± 0.34) to 17.68 ± 0.36 (15.58 ± 0.55)% when measured under reverse (forward) voltage scans. The best-performing wide-bandgap perovskite solar cell, with a bandgap of 1.75 eV, achieves a stabilized PCE of 17.18%.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2];  [1]; ORCiD logo [1]
  1. Univ. of Toledo, Toledo, OH (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
OSTI Identifier:
1357886
Report Number(s):
NREL/JA-5900-68289
Journal ID: ISSN 2380-8195
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 2; Journal Issue: 5; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; perovskite solar cells; lead thiocyanate additive; annealing; thin films

Citation Formats

Yu, Yue, Wang, Changlei, Grice, Corey R., Shrestha, Niraj, Zhao, Dewei, Liao, Weiqiang, Guan, Lei, Awni, Rasha A., Meng, Weiwei, Cimaroli, Alexander J., Zhu, Kai, Ellingson, Randy J., and Yan, Yanfa. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. United States: N. p., 2017. Web. doi:10.1021/acsenergylett.7b00278.
Yu, Yue, Wang, Changlei, Grice, Corey R., Shrestha, Niraj, Zhao, Dewei, Liao, Weiqiang, Guan, Lei, Awni, Rasha A., Meng, Weiwei, Cimaroli, Alexander J., Zhu, Kai, Ellingson, Randy J., & Yan, Yanfa. Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells. United States. https://doi.org/10.1021/acsenergylett.7b00278
Yu, Yue, Wang, Changlei, Grice, Corey R., Shrestha, Niraj, Zhao, Dewei, Liao, Weiqiang, Guan, Lei, Awni, Rasha A., Meng, Weiwei, Cimaroli, Alexander J., Zhu, Kai, Ellingson, Randy J., and Yan, Yanfa. Wed . "Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells". United States. https://doi.org/10.1021/acsenergylett.7b00278. https://www.osti.gov/servlets/purl/1357886.
@article{osti_1357886,
title = {Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells},
author = {Yu, Yue and Wang, Changlei and Grice, Corey R. and Shrestha, Niraj and Zhao, Dewei and Liao, Weiqiang and Guan, Lei and Awni, Rasha A. and Meng, Weiwei and Cimaroli, Alexander J. and Zhu, Kai and Ellingson, Randy J. and Yan, Yanfa},
abstractNote = {Here, we show that the cooperation of lead thiocyanate additive and a solvent annealing process can effectively increase the grain size of mixed-cation lead mixed-halide perovskite thin films while avoiding excess lead iodide formation. As a result, the average grain size of the wide-bandgap mixed-cation lead perovskite thin films increases from 66 ± 24 to 1036 ± 111 nm, and the mean carrier lifetime shows a more than 3-fold increase, from 330 ns to over 1000 ns. Consequently, the average open-circuit voltage of wide-bandgap perovskite solar cells increases by 80 (70) mV, and the average power conversion efficiency (PCE) increases from 13.44 ± 0.48 (11.75 ± 0.34) to 17.68 ± 0.36 (15.58 ± 0.55)% when measured under reverse (forward) voltage scans. The best-performing wide-bandgap perovskite solar cell, with a bandgap of 1.75 eV, achieves a stabilized PCE of 17.18%.},
doi = {10.1021/acsenergylett.7b00278},
journal = {ACS Energy Letters},
number = 5,
volume = 2,
place = {United States},
year = {Wed Apr 26 00:00:00 EDT 2017},
month = {Wed Apr 26 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 152 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

Interface engineering of highly efficient perovskite solar cells
journal, July 2014


High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
journal, May 2015


Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
journal, September 2016


Solar cell efficiency tables (version 49): Solar cell efficiency tables (version 49)
journal, November 2016

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 25, Issue 1
  • DOI: 10.1002/pip.2855

Efficient luminescent solar cells based on tailored mixed-cation perovskites
journal, January 2016


Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide
journal, January 2016

  • Anaraki, Elham Halvani; Kermanpur, Ahmad; Steier, Ludmilla
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02390H

Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells
journal, March 2017


Solar cell efficiency tables (version 48): Solar cell efficiency tables (version 48)
journal, June 2016

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 24, Issue 7
  • DOI: 10.1002/pip.2788

Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber
journal, February 2014

  • Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
  • Applied Physics Letters, Vol. 104, Issue 6
  • DOI: 10.1063/1.4864778

Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance
journal, May 2014


Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory
journal, February 2015

  • Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
  • The Journal of Physical Chemistry C, Vol. 119, Issue 10
  • DOI: 10.1021/jp512077m

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Semi-transparent perovskite solar cells for tandems with silicon and CIGS
journal, January 2015

  • Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE03322A

High-Efficiency Polycrystalline Thin Film Tandem Solar Cells
journal, June 2015

  • Kranz, Lukas; Abate, Antonio; Feurer, Thomas
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 14
  • DOI: 10.1021/acs.jpclett.5b01108

Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications
journal, November 2015

  • Fu, Fan; Feurer, Thomas; Jäger, Timo
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9932

High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration
journal, December 2016


23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
journal, February 2017

  • Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.9

The Controlling Mechanism for Potential Loss in CH 3 NH 3 PbBr 3 Hybrid Solar Cells
journal, July 2016


Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage
journal, October 2014

  • Todorov, Teodor; Gershon, Talia; Gunawan, Oki
  • Applied Physics Letters, Vol. 105, Issue 17
  • DOI: 10.1063/1.4899275

Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives
journal, October 2016


Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement
journal, August 2014


Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells
journal, July 2015

  • Bi, Cheng; Wang, Qi; Shao, Yuchuan
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8747

High-efficiency solution-processed perovskite solar cells with millimeter-scale grains
journal, January 2015


A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells
journal, June 2016


Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
journal, July 2014

  • Jeon, Nam Joong; Noh, Jun Hong; Kim, Young Chan
  • Nature Materials, Vol. 13, Issue 9, p. 897-903
  • DOI: 10.1038/nmat4014

Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells
journal, November 2015

  • Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10030

Square-Centimeter Solution-Processed Planar CH 3 NH 3 PbI 3 Perovskite Solar Cells with Efficiency Exceeding 15%
journal, September 2015

  • Yang, Mengjin; Zhou, Yuanyuan; Zeng, Yining
  • Advanced Materials, Vol. 27, Issue 41
  • DOI: 10.1002/adma.201502586

Perovskite ink with wide processing window for scalable high-efficiency solar cells
journal, March 2017


Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells
journal, May 2016

  • Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei
  • Advanced Materials, Vol. 28, Issue 26
  • DOI: 10.1002/adma.201600594

Efficient and reproducible CH 3 NH 3 PbI 3−x (SCN) x perovskite based planar solar cells
journal, January 2015

  • Chen, Yani; Li, Bobo; Huang, Wei
  • Chemical Communications, Vol. 51, Issue 60
  • DOI: 10.1039/C5CC03615A

Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells
journal, June 2014

  • Chen, Qi; Zhou, Huanping; Song, Tze-Bin
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501838y

Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells
journal, January 2016

  • Wang, Changlei; Zhao, Dewei; Grice, Corey R.
  • Journal of Materials Chemistry A, Vol. 4, Issue 31
  • DOI: 10.1039/C6TA04503K

Efficiency limits for single-junction and tandem solar cells
journal, November 2006


Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution from Solutions and Characterization
journal, November 2015

  • Zhou, Yuanyuan; Game, Onkar S.; Pang, Shuping
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 23
  • DOI: 10.1021/acs.jpclett.5b01843

Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide
journal, September 2016

  • Liao, Weiqiang; Zhao, Dewei; Yu, Yue
  • Journal of the American Chemical Society, Vol. 138, Issue 38
  • DOI: 10.1021/jacs.6b08337

Works referencing / citing this record:

Elimination of Yellow Phase: An Effective Method to Achieve High Quality HC(NH 2 ) 2 PbI 3 ‐based Perovskite Films
journal, January 2020


Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers
journal, November 2018


New Strategies for Defect Passivation in High‐Efficiency Perovskite Solar Cells
journal, April 2020

  • Akin, Seckin; Arora, Neha; Zakeeruddin, Shaik M.
  • Advanced Energy Materials, Vol. 10, Issue 13
  • DOI: 10.1002/aenm.201903090

Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications
journal, January 2019

  • Jung, Minsu; Ji, Sang-Geun; Kim, Gwisu
  • Chemical Society Reviews, Vol. 48, Issue 7
  • DOI: 10.1039/c8cs00656c

Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability
journal, September 2017

  • Jiang, Jiexuan; Wang, Qian; Jin, Zhiwen
  • Advanced Energy Materials, Vol. 8, Issue 3
  • DOI: 10.1002/aenm.201701757

Wide-bandgap, low-bandgap, and tandem perovskite solar cells
journal, July 2019

  • Song, Zhaoning; Chen, Cong; Li, Chongwen
  • Semiconductor Science and Technology, Vol. 34, Issue 9
  • DOI: 10.1088/1361-6641/ab27f7

Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering
journal, June 2018

  • Rajagopal, Adharsh; Yao, Kai; Jen, Alex K. -Y.
  • Advanced Materials, Vol. 30, Issue 32
  • DOI: 10.1002/adma.201800455

Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
journal, August 2018


A review of aspects of additive engineering in perovskite solar cells
journal, January 2020

  • Mahapatra, Apurba; Prochowicz, Daniel; Tavakoli, Mohammad Mahdi
  • Journal of Materials Chemistry A, Vol. 8, Issue 1
  • DOI: 10.1039/c9ta07657c

Perovskite Solar Cells with ZnO Electron-Transporting Materials
journal, November 2017


Engineering Halide Perovskite Crystals through Precursor Chemistry
journal, October 2019


Highly Efficient and Stable Inverted Perovskite Solar Cell Obtained via Treatment by Semiconducting Chemical Additive
journal, December 2018


Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells
journal, November 2018

  • Li, Chongwen; Song, Zhaoning; Zhao, Dewei
  • Advanced Energy Materials, Vol. 9, Issue 3
  • DOI: 10.1002/aenm.201803135

Defect and Contact Passivation for Perovskite Solar Cells
journal, April 2019

  • Aydin, Erkan; Bastiani, Michele; Wolf, Stefaan
  • Advanced Materials, Vol. 31, Issue 25
  • DOI: 10.1002/adma.201900428

Record Open‐Circuit Voltage Wide‐Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure
journal, April 2019

  • Gharibzadeh, Saba; Abdollahi Nejand, Bahram; Jakoby, Marius
  • Advanced Energy Materials, Vol. 9, Issue 21
  • DOI: 10.1002/aenm.201803699

Wide‐Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells
journal, December 2019

  • Li, Zijia; Kim, Tae Hak; Han, Sung Yong
  • Advanced Energy Materials, Vol. 10, Issue 6
  • DOI: 10.1002/aenm.201903085

Supersaturation controlled growth of MAFAPbI3 perovskite film for high efficiency solar cells
journal, June 2018


Compact layer free mixed-cation lead mixed-halide perovskite solar cells
journal, January 2018

  • Hu, Zhelu; Xiang, Hengyang; Schoenauer Sebag, Mathilde
  • Chemical Communications, Vol. 54, Issue 21
  • DOI: 10.1039/c7cc06183h

A Review on Additives for Halide Perovskite Solar Cells
journal, April 2020

  • Liu, Shuang; Guan, Yanjun; Sheng, Yusong
  • Advanced Energy Materials, Vol. 10, Issue 13
  • DOI: 10.1002/aenm.201902492

A thiourea additive-based quadruple cation lead halide perovskite with an ultra-large grain size for efficient perovskite solar cells
journal, January 2019

  • Patil, Jyoti V.; Mali, Sawanta S.; Hong, Chang Kook
  • Nanoscale, Vol. 11, Issue 45
  • DOI: 10.1039/c9nr07377a

Causes and Solutions of Recombination in Perovskite Solar Cells
journal, September 2018


Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive
journal, January 2018

  • Kim, Hongki; Lee, Yoon Ho; Lyu, Taecheon
  • Journal of Materials Chemistry A, Vol. 6, Issue 37
  • DOI: 10.1039/c8ta05916k

Composition-Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement
journal, July 2018

  • Zhou, Yang; Jia, Yong-Heng; Fang, Hong-Hua
  • Advanced Functional Materials, Vol. 28, Issue 35
  • DOI: 10.1002/adfm.201803130

Stabilization of Inorganic CsPb 0.5 Sn 0.5 I 2 Br Perovskite Compounds by Antioxidant Tea Polyphenol
journal, December 2019


Improving Performance and Stability of Planar Perovskite Solar Cells through Grain Boundary Passivation with Block Copolymers
journal, May 2019


High efficiency flexible perovskite solar cells using SnO 2 /graphene electron selective layer and silver nanowires electrode
journal, November 2018

  • Liu, Xiangyang; Yang, Xiaodu; Liu, Xinsheng
  • Applied Physics Letters, Vol. 113, Issue 20
  • DOI: 10.1063/1.5042299

Low‐Bandgap Mixed Tin‐Lead Perovskites and Their Applications in All‐Perovskite Tandem Solar Cells
journal, February 2019

  • Wang, Changlei; Song, Zhaoning; Li, Chongwen
  • Advanced Functional Materials, Vol. 29, Issue 47
  • DOI: 10.1002/adfm.201808801

Improving Performance and Stability of Planar Perovskite Solar Cells through Grain Boundary Passivation with Block Copolymers
journal, May 2019


New Strategies for Defect Passivation in High-Efficiency Perovskite Solar Cells
text, January 2020

  • Akin, S.; Arora, Neha; Zakeeruddin, Sm
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.47739

Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
journal, August 2018