DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles

Abstract

We have studied the high-pressure structural behavior of zinc ferrite (ZnFe2O4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe2O4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn2O4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa. For comparison, we also studied the compression behavior of magnetite (Fe3O4) nanoparticles by X-ray diffraction up to 23 GPa. Spinel-type ZnFe2O4 and Fe3O4 nanoparticles have a bulk modulus of 172 (20) GPa and 152 (9) GPa, respectively. Lastly, this indicates that in both cases the nanoparticles do not undergo a Hall-Petch strengthening.

Authors:
 [1];  [2]; ORCiD logo [1];  [1];  [3];  [4]
  1. Instituto de Tecnologia y Ciencias de la Ingenieria "Ing. Hilario Fernandez Long" (UBA-CONICET), Buenos Aires (Argentina)
  2. Univ. of Nevada, Las Vegas, NV (United States)
  3. Facultad de Ingenieria (UBA), Buenos Aires (Argentina)
  4. Univ. de Valencia, Valencia (Spain)
Publication Date:
Research Org.:
Univ. of Nevada, Las Vegas, NV (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1332349
Alternate Identifier(s):
OSTI ID: 1357835
Grant/Contract Number:  
NA0001982; NA0001974; FG02-99ER45775; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Solid State Sciences
Additional Journal Information:
Journal Volume: 56; Journal Issue: C; Journal ID: ISSN 1293-2558
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; crystal structure; nanostructure; oxides; phase transitions; X-ray diffraction

Citation Formats

Ferrari, S., Kumar, R. S., Grinblat, F., Aphesteguy, J. C., Saccone, F. D., and Errandonea, D. In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles. United States: N. p., 2016. Web. doi:10.1016/j.solidstatesciences.2016.04.006.
Ferrari, S., Kumar, R. S., Grinblat, F., Aphesteguy, J. C., Saccone, F. D., & Errandonea, D. In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles. United States. https://doi.org/10.1016/j.solidstatesciences.2016.04.006
Ferrari, S., Kumar, R. S., Grinblat, F., Aphesteguy, J. C., Saccone, F. D., and Errandonea, D. Sat . "In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles". United States. https://doi.org/10.1016/j.solidstatesciences.2016.04.006. https://www.osti.gov/servlets/purl/1332349.
@article{osti_1332349,
title = {In-situ high-pressure x-ray diffraction study of zinc ferrite nanoparticles},
author = {Ferrari, S. and Kumar, R. S. and Grinblat, F. and Aphesteguy, J. C. and Saccone, F. D. and Errandonea, D.},
abstractNote = {We have studied the high-pressure structural behavior of zinc ferrite (ZnFe2O4) nanoparticles by powder X-ray diffraction measurements up to 47 GPa. We found that the cubic spinel structure of ZnFe2O4 remains up to 33 GPa and a phase transition is induced beyond this pressure. The high-pressure phase is indexed to an orthorhombic CaMn2O4-type structure. Upon decompression the low- and high-pressure phases coexist. The compressibility of both structures was also investigated. We have observed that the lattice parameters of the high-pressure phase behave anisotropically upon compression. Further, we predict possible phase transition around 55 GPa. For comparison, we also studied the compression behavior of magnetite (Fe3O4) nanoparticles by X-ray diffraction up to 23 GPa. Spinel-type ZnFe2O4 and Fe3O4 nanoparticles have a bulk modulus of 172 (20) GPa and 152 (9) GPa, respectively. Lastly, this indicates that in both cases the nanoparticles do not undergo a Hall-Petch strengthening.},
doi = {10.1016/j.solidstatesciences.2016.04.006},
journal = {Solid State Sciences},
number = C,
volume = 56,
place = {United States},
year = {Sat Apr 23 00:00:00 EDT 2016},
month = {Sat Apr 23 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lattice Parameters and Stability of the Spinel Compounds in Relation to the Ionic Radii and Electronegativities of Constituting Chemical Elements
journal, May 2014

  • Brik, Mikhail G.; Suchocki, Andrzej; Kamińska, Agata
  • Inorganic Chemistry, Vol. 53, Issue 10
  • DOI: 10.1021/ic500200a

Superparamagnetism in ZnFe 2 O 4 Induced by High Pressure Squeezing
journal, June 1964

  • Goto, Yasumasa
  • Japanese Journal of Applied Physics, Vol. 3, Issue 6
  • DOI: 10.1143/JJAP.3.309

Phase transition of synthetic zinc ferrite spinel (ZnFe 2 O 4 ) at high pressure, from synchrotron X-ray powder diffraction
journal, November 2000

  • Levy, D.; Pavese, A.; Hanfland, M.
  • Physics and Chemistry of Minerals, Vol. 27, Issue 9
  • DOI: 10.1007/s002690000117

On the compressibility of ferrite spinels: a high-pressure X-ray diffraction study of M Fe 2 O 4 ( M =Mg, Co, Zn)
journal, December 2009


Elasticity of franklinite and trends for transition-metal oxide spinels
journal, March 2013

  • Reichmann, H. J.; Jacobsen, S. D.; Ballaran, T. B.
  • American Mineralogist, Vol. 98, Issue 4
  • DOI: 10.2138/am.2013.4294

Elastic Constants for Zinc Ferrite from the Infrared Spectrum
journal, August 1973


Single crystal elastic constants of zinc ferrite (ZnFe2O4)
journal, July 1990

  • Li, Z.; Fisher, E. S.
  • Journal of Materials Science Letters, Vol. 9, Issue 7
  • DOI: 10.1007/BF00720147

VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Cobalt ferrite nanoparticles under high pressure
journal, August 2015

  • Saccone, F. D.; Ferrari, S.; Errandonea, D.
  • Journal of Applied Physics, Vol. 118, Issue 7
  • DOI: 10.1063/1.4928856

Nanomaterials under high-pressure
journal, January 2006

  • San-Miguel, Alfonso
  • Chemical Society Reviews, Vol. 35, Issue 10
  • DOI: 10.1039/b517779k

Compressibility and Structural Stability of Nanocrystalline TiO 2 Anatase Synthesized from Freeze-Dried Precursors
journal, October 2014

  • Popescu, Catalin; Sans, Juan Angel; Errandonea, Daniel
  • Inorganic Chemistry, Vol. 53, Issue 21
  • DOI: 10.1021/ic501571u

What is behind the inverse Hall–Petch effect in nanocrystalline materials?
journal, June 2007


Structural and Magnetic Properties of Zn-Doped Magnetite Nanoparticles Obtained by Wet Chemical Method
journal, June 2015

  • Ferrari, Sergio; Aphesteguy, Juan Carlos; Saccone, Fabio Daniel
  • IEEE Transactions on Magnetics, Vol. 51, Issue 6
  • DOI: 10.1109/TMAG.2014.2377132

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

Rietveld texture analysis from diffraction images
journal, November 2007


Equation of state of α -Al 2 O 3
journal, August 2013


High pressure–high temperature equations of state of neon and diamond
journal, March 2008

  • Dewaele, Agnès; Datchi, Frédéric; Loubeyre, Paul
  • Physical Review B, Vol. 77, Issue 9, Article No. 094106
  • DOI: 10.1103/PhysRevB.77.094106

Post-spinel transformations and equation of state in ZnGa 2 O 4 : Determination at high pressure by in situ x-ray diffraction
journal, January 2009


Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain
journal, January 1986


Hydrostatic limits of 11 pressure transmitting media
journal, March 2009

  • Klotz, S.; Chervin, J-C.; Munsch, P.
  • Journal of Physics D: Applied Physics, Vol. 42, Issue 7, Article No. 075413
  • DOI: 10.1088/0022-3727/42/7/075413

Complex high-pressure polymorphism of barium tungstate
journal, August 2012


High-pressure structural behaviour of HoVO 4 : combined XRD experiments and ab initio calculations
journal, June 2014

  • Garg, Alka B.; Errandonea, D.; Rodríguez-Hernández, P.
  • Journal of Physics: Condensed Matter, Vol. 26, Issue 26
  • DOI: 10.1088/0953-8984/26/26/265402

New model for the magnetic structure of the marokite-type oxide CaMn2O4
journal, April 2003


Kompressibilitätsmessungen an festen Körpern
journal, January 1921


Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O system at high pressure
journal, March 2000

  • Haavik, Camilla; Stølen, Svein; Fjellvåg, Helmer
  • American Mineralogist, Vol. 85, Issue 3-4
  • DOI: 10.2138/am-2000-0413

In situ structure determination of the high-pressure phase of Fe 3 O 4
journal, February 1999

  • Fei, Yingwei; Frost, Daniel J.; Mao, Ho-Kwang
  • American Mineralogist, Vol. 84, Issue 1-2
  • DOI: 10.2138/am-1999-1-222

Isothermal compression of magnetite to 320 KB
journal, March 1974

  • Mao, Ho-Kwang; Takahashi, Taro; Bassett, William A.
  • Journal of Geophysical Research, Vol. 79, Issue 8
  • DOI: 10.1029/JB079i008p01165

Compressibility of Nanocrystalline TiO 2 Anatase
journal, September 2012

  • Al-Khatatbeh, Yahya; Lee, Kanani K. M.; Kiefer, Boris
  • The Journal of Physical Chemistry C, Vol. 116, Issue 40
  • DOI: 10.1021/jp3075699

High-pressure study of the behavior of mineral barite by x-ray diffraction
journal, August 2011

  • Santamaría-Pérez, D.; Gracia, L.; Garbarino, G.
  • Physical Review B, Vol. 84, Issue 5, Article No. 054102
  • DOI: 10.1103/PhysRevB.84.054102

Pressure-induced transition in titanium metal a systematic study of the effects of uniaxial stress
journal, January 2005

  • Errandonea, Daniel; Meng, Y.; Somayazulu, M.
  • Physica B: Condensed Matter, Vol. 355, Issue 1-4, p. 116-125
  • DOI: 10.1016/j.physb.2004.10.030

Works referencing / citing this record:

Pressure-induced structural and spin transitions of Fe3S4
journal, April 2017

  • Huang, Shengxuan; Kang, Duan; Wu, Xiang
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep46334