skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2H-/1T'-MoS2 on Graphene for Enhanced Photoresponse

Abstract

Recently the applications of two-dimensional (2D) materials have been broadened by engineering their mechanical, electronic, and optical properties through either lateral or vertical hybridization. Along with this line, we report the successful design and fabrication of a novel triphasic 2D material by vertically stacking lateral 2H-/1T'-molybdenum disulfide (MoS2) heterostructures on graphene with the assistance of supercritical carbon dioxide. This triphasic structure is experimentally shown to significantly enhance the photocurrent densities for hydrogen evolution reactions. First-principles theoretical analyses reveal that the improved photoresponse should be ascribed to the beneficial band alignments of the triphasic heterostructure. More specifically, electrons can efficiently hop to the 1T'-MoS2 phase via the highly conductive graphene layer as a result of their strong vertical interfacial electronic coupling. Subsequently, the electrons acquired on the 1T'-MoS2 phase are exploited to fill the photoholes on the photo-excited 2H-MoS2 phase through the lateral heterojunction structure, thereby suppressing the recombination process of the photo-induced charge carriers on the 2H-MoS2 phase. This novel triphasic concept promises to open a new avenue to widen the molecular design of 2D hybrid materials for photonics-based energy conversion applications.

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [2];  [3];  [4]; ORCiD logo [5]
  1. Zhengzhou Univ. (China). College of Materials Science and Engineering
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS) and Computational Sciences and Engineering Division
  3. Shaanxi Normal Univ., Xi'an City (China). Key Lab. for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering
  4. Griffith Univ., QLD (Australia). Griffith School of Environment, Centre for Clean Environment and Energy; Chinese Academy of Sciences (CAS), Hefei (China). Inst. of Solid State Physics, Centre for Environmental and Energy Nanomaterials
  5. Griffith Univ., QLD (Australia). Griffith School of Environment, Centre for Clean Environment and Energy
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC); Australian Research Council (ARC); National Natural Science Foundation of China (NNSFC)
OSTI Identifier:
1356943
Grant/Contract Number:  
AC05-00OR22725; 51173170; 21101141
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Electronic Materials
Additional Journal Information:
Journal Volume: 3; Journal ID: ISSN 2199-160X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; triphasic two-dimensional heterostructures; lateral heterojunction; vertical stacking; photoresponses; hydrogen evolution reactions

Citation Formats

Cui, Weili, Xu, Shanshan S., Yan, Bo, Guo, Zhihua H., Xu, Qun, Sumpter, Bobby G., Huang, Jingsong S., Yin, Shiwei W., Zhao, Huijun J., and Wang, Yun. Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2H-/1T'-MoS2 on Graphene for Enhanced Photoresponse. United States: N. p., 2017. Web. doi:10.1002/aelm.201700024.
Cui, Weili, Xu, Shanshan S., Yan, Bo, Guo, Zhihua H., Xu, Qun, Sumpter, Bobby G., Huang, Jingsong S., Yin, Shiwei W., Zhao, Huijun J., & Wang, Yun. Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2H-/1T'-MoS2 on Graphene for Enhanced Photoresponse. United States. doi:10.1002/aelm.201700024.
Cui, Weili, Xu, Shanshan S., Yan, Bo, Guo, Zhihua H., Xu, Qun, Sumpter, Bobby G., Huang, Jingsong S., Yin, Shiwei W., Zhao, Huijun J., and Wang, Yun. Thu . "Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2H-/1T'-MoS2 on Graphene for Enhanced Photoresponse". United States. doi:10.1002/aelm.201700024. https://www.osti.gov/servlets/purl/1356943.
@article{osti_1356943,
title = {Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2H-/1T'-MoS2 on Graphene for Enhanced Photoresponse},
author = {Cui, Weili and Xu, Shanshan S. and Yan, Bo and Guo, Zhihua H. and Xu, Qun and Sumpter, Bobby G. and Huang, Jingsong S. and Yin, Shiwei W. and Zhao, Huijun J. and Wang, Yun},
abstractNote = {Recently the applications of two-dimensional (2D) materials have been broadened by engineering their mechanical, electronic, and optical properties through either lateral or vertical hybridization. Along with this line, we report the successful design and fabrication of a novel triphasic 2D material by vertically stacking lateral 2H-/1T'-molybdenum disulfide (MoS2) heterostructures on graphene with the assistance of supercritical carbon dioxide. This triphasic structure is experimentally shown to significantly enhance the photocurrent densities for hydrogen evolution reactions. First-principles theoretical analyses reveal that the improved photoresponse should be ascribed to the beneficial band alignments of the triphasic heterostructure. More specifically, electrons can efficiently hop to the 1T'-MoS2 phase via the highly conductive graphene layer as a result of their strong vertical interfacial electronic coupling. Subsequently, the electrons acquired on the 1T'-MoS2 phase are exploited to fill the photoholes on the photo-excited 2H-MoS2 phase through the lateral heterojunction structure, thereby suppressing the recombination process of the photo-induced charge carriers on the 2H-MoS2 phase. This novel triphasic concept promises to open a new avenue to widen the molecular design of 2D hybrid materials for photonics-based energy conversion applications.},
doi = {10.1002/aelm.201700024},
journal = {Advanced Electronic Materials},
number = ,
volume = 3,
place = {United States},
year = {2017},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Light-emitting diodes by band-structure engineering in van der Waals heterostructures
journal, February 2015

  • Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4205

Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures
journal, January 2014

  • Zhang, Wenjing; Chuu, Chih-Piao; Huang, Jing-Kai
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03826

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

MoS2 yolk–shell microspheres with a hierarchical porous structure for efficient hydrogen evolution
journal, August 2016


Molybdenum disulfide as a hydrogen evolution catalyst for water photodecomposition on semiconductors
journal, September 1991


Vacancy-Induced Ferromagnetism of MoS 2 Nanosheets
journal, February 2015

  • Cai, Liang; He, Jingfu; Liu, Qinghua
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja5120908

Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution
journal, January 2012

  • Laursen, Anders B.; Kegnæs, Søren; Dahl, Søren
  • Energy & Environmental Science, Vol. 5, Issue 2
  • DOI: 10.1039/c2ee02618j

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films
journal, May 2013


Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Porous Molybdenum-Based Hybrid Catalysts for Highly Efficient Hydrogen Evolution
journal, October 2015

  • Tang, Yu-Jia; Gao, Min-Rui; Liu, Chun-Hui
  • Angewandte Chemie International Edition, Vol. 54, Issue 44
  • DOI: 10.1002/anie.201505691

Fast One-Pot Synthesis of MoS 2 /Crumpled Graphene p–n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Production
journal, November 2015

  • Carraro, Francesco; Calvillo, Laura; Cattelan, Mattia
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 46
  • DOI: 10.1021/acsami.5b06668

Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices
journal, October 2013

  • Roy, Kallol; Padmanabhan, Medini; Goswami, Srijit
  • Nature Nanotechnology, Vol. 8, Issue 11
  • DOI: 10.1038/nnano.2013.206

Probing the Dynamics of the Metallic-to-Semiconducting Structural Phase Transformation in MoS 2 Crystals
journal, July 2015


Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances
journal, January 2014

  • Wang, Huanli; Zhang, Lisha; Chen, Zhigang
  • Chemical Society Reviews, Vol. 43, Issue 15
  • DOI: 10.1039/C4CS00126E

Sites for High Efficient Photocatalytic Hydrogen Evolution on a Limited-Layered MoS 2 Cocatalyst Confined on Graphene Sheets―The Role of Graphene
journal, November 2012

  • Min, Shixiong; Lu, Gongxuan
  • The Journal of Physical Chemistry C, Vol. 116, Issue 48
  • DOI: 10.1021/jp3093786

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices
journal, July 2012

  • Haigh, S. J.; Gholinia, A.; Jalil, R.
  • Nature Materials, Vol. 11, Issue 9
  • DOI: 10.1038/nmat3386

Geometric structure of rutile titanium dioxide (111) surfaces
journal, July 2014


Highly Effective Visible-Light-Induced H 2 Generation by Single-Layer 1T-MoS 2 and a Nanocomposite of Few-Layer 2H-MoS 2 with Heavily Nitrogenated Graphene
journal, November 2013

  • Maitra, Urmimala; Gupta, Uttam; De, Mrinmoy
  • Angewandte Chemie International Edition, Vol. 52, Issue 49
  • DOI: 10.1002/anie.201306918

Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions
journal, September 2014

  • Duan, Xidong; Wang, Chen; Shaw, Jonathan C.
  • Nature Nanotechnology, Vol. 9, Issue 12, p. 1024-1030
  • DOI: 10.1038/nnano.2014.222

Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide
journal, October 2015

  • Chou, Stanley S.; Sai, Na; Lu, Ping
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9311

Characterization of few-layer 1T-MoSe 2 and its superior performance in the visible-light induced hydrogen evolution reaction
journal, September 2014

  • Gupta, Uttam; Naidu, B. S.; Maitra, Urmimala
  • APL Materials, Vol. 2, Issue 9
  • DOI: 10.1063/1.4892976

Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2
journal, July 2012

  • Eda, Goki; Fujita, Takeshi; Yamaguchi, Hisato
  • ACS Nano, Vol. 6, Issue 8, p. 7311-7317
  • DOI: 10.1021/nn302422x

Pressure-Dependent Optical and Vibrational Properties of Monolayer Molybdenum Disulfide
journal, December 2014

  • Nayak, Avinash P.; Pandey, Tribhuwan; Voiry, Damien
  • Nano Letters, Vol. 15, Issue 1, p. 346-353
  • DOI: 10.1021/nl5036397

Kinetics of the hydrogen evolution reaction on NiMn graphite modified electrode
journal, September 2011


Strong interface-induced spin–orbit interaction in graphene on WS2
journal, September 2015

  • Wang, Zhe; Ki, Dong–Keun; Chen, Hua
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9339

Design of High-Efficiency Visible-Light Photocatalysts for Water Splitting: MoS 2 /AlN(GaN) Heterostructures
journal, July 2014

  • Liao, Jiamin; Sa, Baisheng; Zhou, Jian
  • The Journal of Physical Chemistry C, Vol. 118, Issue 31
  • DOI: 10.1021/jp5038014

Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Raman Spectrum of Graphene and Graphene Layers
journal, October 2006


A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation
journal, February 2012


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Ultimate thin vertical p–n junction composed of two-dimensional layered molybdenum disulfide
journal, March 2015

  • Li, Hua-Min; Lee, Daeyeong; Qu, Deshun
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7564

Photoluminescence from Chemically Exfoliated MoS2
journal, December 2011

  • Eda, Goki; Yamaguchi, Hisato; Voiry, Damien
  • Nano Letters, Vol. 11, Issue 12, p. 5111-5116
  • DOI: 10.1021/nl201874w

Solar Hydrogen Generation by Nanoscale p–n Junction of p -type Molybdenum Disulfide/ n -type Nitrogen-Doped Reduced Graphene Oxide
journal, May 2013

  • Meng, Fanke; Li, Jiangtian; Cushing, Scott K.
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404851s

Graphene adhesion on MoS2 monolayer: An ab initio study
journal, January 2011


From Bulk to Monolayer MoS2: Evolution of Raman Scattering
journal, January 2012

  • Li, Hong; Zhang, Qing; Yap, Chin Chong Ray
  • Advanced Functional Materials, Vol. 22, Issue 7
  • DOI: 10.1002/adfm.201102111

    Works referencing / citing this record:

    Supercritical Fluid‐Facilitated Exfoliation and Processing of 2D Materials
    journal, July 2019


    Supercritical Fluid‐Facilitated Exfoliation and Processing of 2D Materials
    journal, July 2019